Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'agent-based approach':
Найдено статей: 14
  1. Саленек И.А., Селиверстов Я.А., Селиверстов С.А., Софронова Е.А.
    Повышение качества генерации маршрутов в SUMO на основе данных с детекторов с использованием обучения с подкреплением
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 137-146

    Данная работа предлагает новый подход к построению высокоточных маршрутов на основе данных от транспортных детекторов в пакете моделирования трафика SUMO. Существующие инструменты, такие как flowrouter и routeSampler, имеют ряд недостатков, таких как отсутствие взаимодействия с сетью в процессе построения маршрутов. Наш rlRouter использует мультиагентное обучение с подкреплением (MARL), где агенты — это входящие полосы движения, а окружающая среда — дорожная сеть. Добавляя в сеть транспортные средства с определенными маршрутами, агенты получают вознаграждение за сопоставление данных с детекторами транспорта. В качестве алгоритма мультиагентного обучения с подкреплением использовался DQN с разделением параметров между агентами и LSTM-слоем для обработки последовательных данных.

    Поскольку rlRouter обучается внутри симуляции SUMO, он может лучше восстанавливать маршруты, принимая во внимание взаимодействие транспортных средств внутри сети друг с другом и с сетевой инфраструктурой. Мы смоделировали различные дорожные ситуации на трех разных перекрестках, чтобы сравнить производительность маршрутизаторов SUMO с rlRouter. Мы использовали среднюю абсолютную ошибку (MAE) в качестве меры отклонения кумулятивных данных детекторов и от данных маршрутов. rlRouter позволил добиться высокого соответствия данным с детекторов. Мы также обнаружили, что, максимизируя вознаграждение за соответствие детекторам, результирующие маршруты также становятся ближе к реальным. Несмотря на то, что маршруты, восстановленные с помощью rlRouter, превосходят маршруты, полученные с помощью инструментов SUMO, они не полностью соответствуют реальным из-за естественных ограничений петлевых детекторов. Чтобы обеспечить более правдоподобные маршруты, необходимо оборудовать перекрестки другими видами транспортных счетчиков, например, детекторами-камерами.

    Salenek I.A., Seliverstov Y.A., Seliverstov S.A., Sofronova E.A.
    Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146

    This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.

    Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.

  2. Белотелов Н.В., Логинов Ф.В.
    Агентная модель межкультурных взаимодействий: возникновение культурных неопределенностей
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1143-1162

    В статье описывается имитационная агентная модель межкультурных взаимодействий в стране, население которой принадлежит к разным культурам. Считается, что пространство культур может быть представлено как гильбертово пространство, в котором различным культурам соответствуют определенные подпространства. В модели понятие «культура» понимается как некоторое структурированное подпространство гильбертова пространства. Это позволяет описывать состояние агентов вектором в гильбертовом пространстве. Считается, что каждый агент описывается принадлежностью к определенной культуре. Численности агентов, принадлежащие определенным культурам, определяются демографическими процессами, которые соответствуют данным культурам, глубиной и целостностью образовательного процесса, а также интенсивностью межкультурных контактов. Взаимодействие между агентами происходит внутри кластеров, на которые по определенным критериям разбивается все множество агентов. При взаимодействии между агентами по определенному алгоритму изменяются длина и угол, характеризующий состояние агента. В процессе имитации в зависимости от количества агентов, относящихся к различным культурам, интенсивности демографических и образовательных процессов, а также интенсивности межкультурных контактов формируются совокупности агентов (кластеры), агенты которых принадлежат разным культурам. Такие межкультурные кластеры не принадлежат целиком ни к одной из рассматриваемых первоначально в модели культур. Такие межкультурные кластеры порождают неопределенности в культурной динамике. В работе приводятся результаты имитационных экспериментов, которые иллюстрируют влияние демографических и образовательных процессов на динамику межкультурных кластеров. Обсуждаются вопросы развития предложенного подхода к изучению (обсуждению) переходных состояний развития культур.

    Belotelov N.V., Loginov F.V.
    The agent model of intercultural interactions: the emergence of cultural uncertainties
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1143-1162

    The article describes a simulation agent-based model of intercultural interactions in a country whose population belongs to different cultures. It is believed that the space of cultures can be represented as a Hilbert space, in which certain subspaces correspond to different cultures. In the model, the concept of culture is understood as a structured subspace of the Hilbert space. This makes it possible to describe the state of agents by a vector in a Hilbert space. It is believed that each agent is described by belonging to a certain «culture». The number of agents belonging to certain cultures is determined by demographic processes that correspond to these cultures, the depth and integrity of the educational process, as well as the intensity of intercultural contacts. Interaction between agents occurs within clusters, into which, according to certain criteria, the entire set of agents is divided. When agents interact according to a certain algorithm, the length and angle that characterize the state of the agent change. In the process of imitation, depending on the number of agents belonging to different cultures, the intensity of demographic and educational processes, as well as the intensity of intercultural contacts, aggregates of agents (clusters) are formed, the agents of which belong to different cultures. Such intercultural clusters do not entirely belong to any of the cultures initially considered in the model. Such intercultural clusters create uncertainties in cultural dynamics. The paper presents the results of simulation experiments that illustrate the influence of demographic and educational processes on the dynamics of intercultural clusters. The issues of the development of the proposed approach to the study (discussion) of the transitional states of the development of cultures are discussed.

  3. Скворцова Д.А., Чувильгин Е.Л., Смирнов А.В., Романов Н.О.
    Разработка гибридной имитационной модели сборочного цеха
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1359-1379

    В представленной работе разработана гибридная имитационная модель сборочного цеха в среде AnyLogic, которая позволяет подбирать оптимальные параметры производственной системы. Для построения гибридной модели использовались подходы, объединяющие дискретно-событийное моделирование и агентное в единую модель с интегрирующим взаимодействием. В рамках данной работы описан механизм функционирования сложной производственной системы, состоящей из нескольких участников-агентов. Каждому агенту соответствует класс, в котором задается определенный набор параметров агента. В имитационной модели были учтены три основные группы операции, выполняющиеся последовательно, определена логика работы с забракованными комплектами. Процесс сборки изделия представляет собой процесс, протекающий в многофазной разомкнутой системе массового обслуживания с ожиданием. Также есть признаки замкнутой системы — потоки брака для повторной обработки. При создании распределительной системы в сегменте окончательного контроля используются законы выполнения заявок в очереди типа FIFO. Для функциональной оценки производственной системы в имитационной модели включены несколько функциональных переменных, описывающих количество готовых изделий, среднее время подготовки изделий, количество и доля брака, результат моделирования для проведения исследований, а также функциональные переменные, в которых будут отображаться расчетные коэффициенты использования. Были проведены серии экспериментов по моделированию с целью изучения влияния поведения агентов системы на общие показатели эффективности производственной системы. В ходе эксперимента было установлено, что на показатель среднего времени подготовки изделия основное влияние оказывают такие параметры, как средняя скорость подачи комплекта заготовки, среднее время выполнения операций. На заданном промежутке ограничений удалось подобрать оптимальный набор параметров, при котором удалось достичь наиболее эффективной работы сборочной линии. Данный эксперимент подтверждает основной принцип агентного моделирования: децентрализованные агенты вносят личный вклад и оказывают влияние на работу всей моделируемой системы в целом. Вре зультате проведенных экспериментов, благодаря подбору оптимального набора параметров, удалось улучшить основные показатели функционирования сборочного цеха, а именно: увеличить показатель производительности на 60%; снизить показатель средней продолжительности сборки изделия на 38%.

    Skvortsova D.A., Chuvilgin E.L., Smirnov A.V., Romanov N.O.
    Development of a hybrid simulation model of the assembly shop
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379

    In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.

  4. Вигонт В.А., Миронычева Е.С., Топаж А.Г.
    Модификация модели роста грибов Чантера–Торнли и ее анализ средствами многоподходного имитационного моделирования
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 375-385

    Классическая математическая модель выращивания грибов Чантера–Торнли модифицирована и реализована в среде имитационного моделирования AnyLogic с одновременным использованием элементов системной динамики, дискретно-событийного и агентного подхода. Проведено численное исследование построенной модели и решена оптимизационная задача нахождения возраста срезания плодовых тел, обеспечивающего максимальный интегральный урожай грибов по всем «волнам» плодообразования.

    Vigont V.A., Mironycheva O.S., Topaj A.G.
    Modification of Chanter–Thornley mushroom growth model and its analysis by means of multiapproach simulation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 375-385

    Classical Chanter–Thornley model of mushroom growth has been modified and implemented in AnyLogic simulation environment by means of system dynamics, discrete-event and agent-based approaches. A numerical case study of the model is presented and the problem of optimum age at harvest, providing the maximum integral yield for all fruiting “waves” is solved.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.