Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'Richtmyer–Meshkov':
Найдено статей: 1
  1. Долуденко А.Н.
    O контактных неустойчивостях вязкопластических жидкостей в трехмерной постановке задачи
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 431-444

    В работе изучаются неустойчивости Рихтмайера–Мешкова и Рэлея–Тейлора вязкопластических жидкостей (или, в частности, бингамовских жидкостей, обладающих предельным напряжением сдвига) в трехмерной постановке задачи. Анализируется развитие неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовских жидкостей при одномодовом возмущении скорости контактной границы. Анализ проводится на основе численного моделирования с использованием метода Мак-Кормака и метода объема жидкости (метода VOF — Volume of Fluid) для отслеживания контактной границы в различные моменты времени. Представлены результаты численного моделирования неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовской жидкости и их сравнение как с теорией, так и с результатами моделирования ньютоновской жидкости. В результате проведенных численных расчетов показано, что предел текучести вязкопластической жидкости существенно влияет на характер неустойчивости как Рэлея–Тейлора, так и Рихтмайера–Мешкова: существует критическая амплитуда начального возмущения поля скорости контактной границы, при превышении которой начинается развитие неустойчивостей. Если амплитуда начального возмущения поля скорости меньше критического значения, то это возмущение относительно быстро затухает и развития неустойчивостей не происходит. При превышении начальным возмущением критической амплитуды характер развития неустойчивостей напоминает таковой у ньютоновской жидкости. При рассмотрении неустойчивости Рихтмайера–Мешкова оцениваются критические амплитуды начального возмущения поля скорости контактной границы при различных значениях предельного напряжения сдвига бингамовской жидкости. Кроме того, наблюдается отличие поведения неньютоновской жидкости при развитии неустойчивости от плоского случая: при одном и том же зна- чении предельного напряжения сдвига в трехмерной геометрии интервал значений амплитуды начального возмущения, при котором происходит переход от покоя к движению, несколько уже. Помимо этого показано, что критическая амплитуда начального возмущения контактной границы для неустойчивости Рэлея–Тейлора ниже, чем для неустойчивости Рихтмайера–Мешкова. Это объясняется действием силы тяжести, «помогающей» развитию неустойчивости и противодействующей силам вязкого трения.

    Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The RichtmyerMeshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the RichtmyerMeshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and RichtmyerMeshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the RichtmyerMeshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the RichtmyerMeshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Просмотров за год: 19.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.