Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Переход от регулярной к хаотической динамике в слабосвязанных вращающихся кластерах
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 13-20В работе методом Монте-Карло определены доли регулярной и хаотической компонент в динамике трехатомных ван-дер-ваальсовых кластеров при различных значениях полной энергии и углового момента. Используя метод эффективных мод, в работе объяснены немонотонность зависимости объема хаотической компоненты от величины углового момента и причины перехода от регулярного к хаотическому режиму движения.
Transition from regular to chaotic dynamics for weakly bound rotating clusters
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 13-20Просмотров за год: 2.The measure of regular and chaotic component in dynamics of van-der-Waals clusters has been obtained by Monte Carlo method at different values of the total energy and the angular momentum. The nonmonotonic dependence of the volume of chaotic component on the angular momentum has been determined. The reason of transition to the chaotic regime has been revealed.
-
Об устойчивости гравитационной системы многих тел
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.
On the stability of the gravitational system of many bodies
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.
-
Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 87-94В настоящее время в ОИЯИ (Дубна) осуществляется строительство ускорительного комплекса NICA для проведения экспериментов по изучению взаимодействий релятивистских ядер и поляризованных частиц (протонов и дейтронов). Одна из создаваемых экспериментальных установок MPD (MultiPurpose Detector) рассчитана на изучение ядро-ядерных, протон-ядерных и протон-протонных взаимодействий. В связи с планами развития установки MPD рассматривается возможность создания внутреннего трекера с использованием кремниевых пиксельных детекторов нового поколения. Предполагается, что такой детектор позволит значительно повысить исследовательский потенциал эксперимента как для ядро-ядерных (за счет высокого пространственного разрешения вблизи области пересечения пучков), так и для протон-протонных (за счет высокого быстродействия) взаимодействий.
В представленной работе изучаются основные характеристики такого трекера с использованием данных по протон-протонным взаимодействиям, полученных с помощью моделирования методом Монте-Карло. В частности, оцениваются возможности детектора по восстановлению вершин распада короткоживущих частиц и по выделению редких событий таких распадов среди продуктов гораздо более вероятных «обычных» взаимодействий. Также затрагивается проблема разделения вершин взаимодействий для восстановления наложенных событий при высокой светимости ускорителя и способность детектора проводить быструю селекцию редких событий (триггер). Полученные результаты могут быть использованы для обоснования необходимости создания данного детектора и развития системы триггера высокого уровня, основанного в том числе на методах машинного обучения.
Ключевые слова: моделирование методом Монте-Карло, кремниевый пиксельный детектор, вторичная вершина, очарованные частицы.
A Monte-Carlo study of the inner tracking system main characteristics for multi purpose particle detector MPD
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 87-94Просмотров за год: 28.At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons). One of the experimental facilitues MPD (MultiPurpose Detector) was designed to investigate nucleus-nucleus, protonnucleus and proton-proton interactions. The existing plans of future MPD upgrade consider a possibility to install an inner tracker made of the new generation silicon pixel sensors. It is expected that such a detector will considerably enhance the research capability of the experiment both for nucleus-nucleus interactions (due to a high spatial resolution near the collision region) and proton-proton ones (due to a fast detector response).
This paper presents main characteristics of such a tracker, obtained using a Monte-Carlo simulation of the detector for proton-proton collisions. In particular, the detector ability to reconstruct decay vertices of short-lived particles and perform a selection of rare events of such decays from much more frequent “common” interactions are evaluated. Also, the problem of a separation of multiple collisions during the high luminosity accelerator running and the task of detector triggering on rare events are addressed. The results obtained can be used to justify the necessity to build such a detector and to develop a high-level trigger system, possibly based on machine learning techniques.
-
Локальные оценки метода Монте-Карло в решении уравнения глобального освещения с учетом спектрального представления объектов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 75-84В статье рассматриваются локальная и двойная локальная оценка метода Монте-Карло при решении уравнения глобального освещения. Локальная оценка позволяет в диффузном приближении рассчитывать освещенность в произвольной точке, тогда как двойная локальная оценка позволяется вычислять непосредственно яркость в заданной точке по заданному направлению. В статье дается математическое обоснование локальных оценок и рассмотрены основные этапы реализации программного обеспечения. Также рассматривается представление трехмерных объектов в базисе сферических функций и возможность использования их в локальных оценках.
Local estimations of Monte Carlo method with the object spectral representation in the solution of global illumination
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 75-84Цитирований: 2 (РИНЦ).The article deals with the local and double local estimation of the Monte Carlo method for solving the equation of global illumination. The local estimation allows calculating the illumination at any point at the approximation of diffuse reflection, whereas the double local estimation allows calculating directly the luminance at a given point in a given direction. The article presents the mathematical basis of local estimations and the basic stages of the software implementation. The representation of three-dimensional objects in the basis of spherical functions and the possibility of using them in the local estimations are also considered.
-
Об эффективности методов максимального сечения в теории переноса излучения
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 573-582В работе рассматриваются две модификации метода максимального сечения для решения стационарного уравнения переноса излучения в трехмерной неоднородной среде. Обе модификации основаны на применении метода Монте-Карло к суммированию ряда Неймана для решения уравнения переноса. Одна из них — традиционная, вторая — основана на использовании ветвящихся цепей Маркова. Проводится численное сравнение этих алгоритмов.
On the efficiency of the maximum cross section method in radiation transport theory
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582Просмотров за год: 4. Цитирований: 2 (РИНЦ).We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.
-
Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.
Ключевые слова: сжиженный природный газ, СПГ, оптимизация производства СПГ, смесевой хладагент, СХА, нейронные сети, искусственный интеллект.
Applying artificial neural network for the selection of mixed refrigerant by boiling curve
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.
-
Алгоритмы параллельных вычислений в задачах радиационно кондуктивного теплообмена
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 543-552Рассматриваются задачи радиационно-кондуктивного теплообмена в рассеивающем слое, заключающиеся в нахождении температурного профиля и улучшении теплоотдачи от границ слоя. Для их решения применяется итерационный рекурсивный алгоритм, основанный на методе Монте-Карло. Анализируются различные подходы параллелизации предложенного алгоритма.
Algorithms of parallel computing for radiative-conductive heat transfer problems
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 543-552Просмотров за год: 2. Цитирований: 5 (РИНЦ).The problems of radiative-conductive heat transfer in the scattering layer are considered. They consist in finding the temperature profile and improving the heat transfer from boundaries. For their solution the Monte Carlo method is used. The different approaches of parallelization of proposed algorithm are analyzed.
-
О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.
В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.
Ключевые слова: выпуклая оптимизация, стохастическая оптимизация, регуляризация, острый минимум, условие квадратичного роста, метод Монте-Карло.
On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.
In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.
-
Расчетное моделирование теплофизических процессов в высокотемпературном газоохлаждаемом реакторе
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 895-906В настоящее время в Российской Федерации разрабатывается высокотемпературный газоохлаждаемый реактор, являющийся составной частью атомной энерготехнологической станции, предназначенной для крупномасштабного производства водорода. При разработке проекта высокотемпературного газоохлаждаемого реактора одной из ключевых задач является расчетное обоснование принятой конструкции.
В статье приводится методика расчетного анализа теплофизических характеристик высокотемпературного газоохлаждаемого реактора. Методика базируется на использовании современных вычислительных программ для электронно-вычислительных машин.
Выполнение задачи теплофизического расчета реактора в целоми активной зоны в частности проводилось в три этапа. Первый этап заключается в обосновании нейтронно-физических характеристик активной зоны блочного типа в процессе выгорания с использованием программы MCU-HTR, основанной на методе Монте-Карло. Вторым и третьим этапами являются исследования течения теплоносителя и температурного состояния реактора и активной зоны в трехмерной постановке с требуемой степенью детализации с помощью программ FlowVision и ANSYS.
Для проведения расчетных исследований были разработаны расчетные модели проточной части реактора и колонны тепловыделяющих сборок.
По результатам расчетного моделирования оптимизированы конструкция опорных колонн и нейтронно-физические параметры тепловыделяющей сборки. Это привело к снижению суммарного гидравлического сопротивления реактора и максимальной температуры топливных элементов.
Показана зависимость максимальной температуры топлива от величины коэффициентов неравномерности энерговыделения, определяемой расположением поглощающих стержней и компактов выгорающего поглотителя в тепловыделяющей сборке.
Ключевые слова: высокотемпературный газоохлаждаемый реактор, ВТГР, активная зона, тепловыделяющая сборка, расчетная модель, теплофизика, теплогидравлика.
Computational modeling of the thermal and physical processes in the high-temperature gas-cooled reactor
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 895-906The development of a high-temperature gas-cooled reactor (HTGR) constituting a part of nuclear power-and-process station and intended for large-scale hydrogen production is now in progress in the Russian Federation. One of the key objectives in development of the high-temperature gas-cooled reactor is the computational justification of the accepted design.
The article gives the procedure for the computational analysis of thermal and physical characteristics of the high-temperature gas-cooled reactor. The procedure is based on the use of the state-of-the-art codes for personal computer (PC).
The objective of thermal and physical analysis of the reactor as a whole and of the core in particular was achieved in three stages. The idea of the first stage is to justify the neutron physical characteristics of the block-type core during burn-up with the use of the MCU-HTR code based on the Monte Carlo method. The second and the third stages are intended to study the coolant flow and the temperature condition of the reactor and the core in 3D with the required degree of detailing using the FlowVision and the ANSYS codes.
For the purpose of carrying out the analytical studies the computational models of the reactor flow path and the fuel assembly column were developed.
As per the results of the computational modeling the design of the support columns and the neutron physical characteristics of the fuel assembly were optimized. This results in the reduction of the total hydraulic resistance of the reactor and decrease of the maximum temperature of the fuel elements.
The dependency of the maximum fuel temperature on the value of the power peaking factors determined by the arrangement of the absorber rods and of the compacts of burnable absorber in the fuel assembly is demonstrated.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"