Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Методы оценивания параметров случайных точечных полей с локальным взаимодействием
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 323-332В работе дается краткий обзор методов оценивания параметров случайных точечных процессов с локальным взаимодействием между точками. Показано, что общепринятый метод максимального псевдоправдоподобия является частным случаем методов оценивания, основанных на использовании вспомогательного марковского процесса, инвариантная мера которого является гиббсовским точечным полем с параметрами, подлежащими оцениванию. Предложено обобщение данного метода, приводящее к такому виду уравнений для получения оценок неизвестных параметров, который не может быть получен с помощью универсального метода Такача–Фикселя. Компьютерные эксперименты показывают, что новый метод позволяет получать оценки, качество которых выше, чем качество оценок широко используемого метода максимального правдоподобия.
Ключевые слова: гиббсовское точечное поле, оценивающая функция, псевдоправдоподобие, оценивание параметров.
Parameter estimation methods for random point fields with local interactions
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 323-332Просмотров за год: 3.The paper gives an overview of methods for estimating the parameters of random point fields with local interaction between points. It is shown that the conventional method of the maximum pseudo-likelihood is a special case of the family of estimation methods based on the use of the auxiliary Markov process, invariant measure of which is the Gibbs point field with parameters to be estimated. A generalization of this method, resulting in estimating equation that can not be obtained by the the universal Takacs–Fiksel method, is proposed. It is shown by computer simulations that the new method enables to obtain estimates which have better quality than those by a widely used method of the maximum pseudolikelihood.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"