Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Континуальные трансформирующиеся оболочки из тонких пластин
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 3-29Изучаются трансформирующиеся системы, собранные из трапециевидных пластин. При развертывании пакета пластинок образуется сетчатая оболочка с шестигранными ячейками. Доказывается, что при определенных соотношениях размеров граней в шестизвенниках появляются дополнительные внутренние степени свободы. Если же используются тонкие пластинки, то континуальная аппроксимация развернутой сети может интерпретироваться как оболочка с широким набором локальных кривизн. Строится кинематика континуальной модели методом подвижного репера Картана. Изучается механическое поведение континуальных сетей, если цилиндрические шарниры между пластинами выполнены из пластических материалов, обладающих памятью формы. Исследуются переходы оболочек из одной равновесной формы в другую. Показаны возможные практические применения континуальных сетей.
Ключевые слова: континуальные трансформирующиеся оболочки, репер Картана, пластические материалы, память формы, устойчивое равновесие, практическое применение.
Continuum deployable shells made of thin plates
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29Цитирований: 3 (РИНЦ).This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.
-
Сплошные среды из тонких пластин
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.
Ключевые слова: фрактальная система, тонкие пластинки, сплошная среда, репер Картана, предельная нагрузка, жесткопластическое тело, память формы.Просмотров за год: 2.The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable — initially it is close to a small diameter one-dimensional manifold that occupies significant volume after deployment. The geometry of solids is studied using the method of the moving hedron. The relations enabling to define the geometry of the introduced manifolds are derived based on the Cartan structure equations. The proof substantially makes use of the fact that the fractal consists of thin plates that are not long compared to the sizes of the system. The mechanics is described for the solids with rigid plastic hinges between the plates, when the hinges are made of shape memory material. Based on the ultimate load theorems, estimates are performed to specify internal pressure that is required to deploy the package into a three-dimensional structure, and heat input needed to return the system into its initial state.
-
Сетчатые развертывающиеся оболочки из полос, образованных трапециевидными пластинами
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 63-73Изучаются развертывающиеся системы, составленные из набора трапециевидных пластин. Средние линии пластин в первоначальном положении пакета представляют собой плоскую кривую. Доказывается, что при разворачивании пакета из тонких пластинок, образуется поверхность, аппроксимирующая оболочку практически любой кривизны. Строится кинематика континуальной модели методом подвижного репера Картана, обобщающая ранее опубликованные результаты авторов. Показаны приложения к оболочкам вращения. Представлены экспериментальные модели развертывающихся систем.
Ключевые слова: континуальные развертывающиеся системы, репер Картана, оболочки вращения, экспериментальные модели.
Latticed deployable shells made of strips assembled from trapezoid plates
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 63-73Просмотров за год: 1. Цитирований: 3 (РИНЦ).This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface approximating a shell of nearly any curvature is formed. Kinematics of the continual model is analyzed by the method of Cartan moving hedron, extending the results the authors published earlier. Various applications of rotating shells are shown. Experimental models of deployable latticed systems are demonstrated.
-
Теоремы о предельной нагрузке для жесткопластических сплошных сред с внутренними степенями свободы и их приложение к континуальным сетчатым оболочкам
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 423-432Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.
Ключевые слова: жесткопластическая среда, репер Картана, определяющие уравнения, предельная нагрузка, память формы, оболочки вращения.
Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432Цитирований: 2 (РИНЦ).This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"