Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Двухконтурная система с различными по длине кластерами и неодинаковым расположением двух узлов на контурах
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 217-240Исследуется система, принадлежащая классу динамических систем, разработанному А. П. Буслаевым (сети Буслаева). В этой системе на каждом из двух замкнутых контуров находится отрезок, называемый кластером и движущийся с постоянной скоростью, если нет задержек. Длины кластеров равны $l_1^{}$ и $l_2^{}$. Имеются две общие точки контуров, называемые узлами. Задержки в движении кластеров обусловлены тем, что два кластера не могут проходить через узел одновременно. Контуры имеют одинаковую длину, принимаемую за единицу. Узлы делят каждый контур на части, длина одной из которых равна $d_i^{}$, а другой — $1-d_i^{}$, $i=1,\,2$, — номер контура. Исследуется спектр средних скоростей системы, т.е. множество пар значений $(v_1^{},\,v_2^{})$, где $v_i^{}$ — средняя скорость движения кластера $i$ с учетом задержек, при различных начальных состояниях и фиксированных значениях $l_1^{}$, $l_2^{}$, $d_1^{}$, $d_2^{}$. Выявлено 12 сценариев поведения системы и для каждого из этих сценариев найдены достаточные условия его реализации, причем при каждом из этих сценариев спектр содержит одну или две пары значений средних скоростей.
Ключевые слова: сети Буслаева, предельный цикл.
Double-circuit system with clusters of different lengths and unequal arrangement of two nodes on the circuits
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 217-240We study a system that fulfills the class of driving systems developed by A. P. Buslaev (Buslaev networks). In this system, in each of two closed loops there is a segment called a cluster, and it moves at a constant speed if there are no delays. The lengths of the clusters are $l_1^{}$ and $l_2^{}$. There are two common points of the contours, called nodes. Delays in the movement of clusters are due to the fact that two clusters cannot pass through a node at the same time. The contours have the same height, the glazing is accepted. The nodes divide each contour into parts, the length of one of which is equal to $d_i^{}$, and the other $1-d_i^{}$, $i=1,\,2$, — contour number. Studies of the spectrum of average speeds of systems, i.\,e. set of pairs of results $(v_1^{},\,v_2^{})$, where $v_i^{}$ — cluster of average movement speed $i$ taking into account delays, for different initial states and fixed values $l_1^{}$, $l_2^{}$, $d_1^{}$, $d_2^{}$. 12 scenarios of system behavior have been identified, and for each of these manifestations sufficient conditions for its implementation have been found, and each of these observed spectra contains one or two pairs of average velocities.
Keywords: Buslaev networks, limit cycle.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"