Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.
Ключевые слова: байесовское обучение, слияние данных сенсоров, локализация, автономные транспортные средства.
Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303Просмотров за год: 22.The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.
-
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
Ключевые слова: automatic relevance determination, Bayesian deep neural networks, truncated lognormal variational approximation, macroscopic image.
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Ключевые слова: прогнозирование заболеваемости, поточечные оценки, регрессионные модели, АРПСС, скрытые марковские модели, метод аналогий, экспоненциальное сглаживание, SIR, модель Барояна–Рвачева, клеточные автоматы, популяционные модели, агентные модели.
Forecasting methods and models of disease spread
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).
-
Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.
Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.
Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.
С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.
Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.
В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.
Ключевые слова: моделирование социальной напряженности, уточнение коэффициентов модели, оценка стабильности, региональные особенности, нормировка статистических данных.
Assessment of the elite–people interaction in post-soviet countries using the Bayesian approach
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1233-1247A previously developed model that describes the dynamics of social tension in a society divided into two groups: the elite and the people was considered. This model took into account the impact of economic situation changes and the elite–people interaction. The model has been modified by including in the equation describing the tension of the people, a term that takes into account the adaptation of the people to the current situation.
The model coefficients estimation is an important task, the solution of which allows obtaining information about the nature of the interaction between elite and people. We believe that the solution of the system of model equations with optimal coefficients is closest to the values of the indicator characterizing social tension. We used the normalized level of homicide rate as an indicator of social tension.
The model contains seven coefficients. Two coefficients characterizing the influence of economic situation changes on elite and people are taken equal to each other and the same for all countries. We obtained their estimations using a simplified model that takes into account only the change in the economic situation and allows an analytical solution.
The Bayesian approach was used to estimate the remaining five coefficients of model for post-Soviet countries. The prior probability densities of the four coefficients for all countries under consideration were taken to be the same. The prior probability density of fifth coefficient was considered to depend on the regime of government (authoritarian or «transitional»). We assumed that the calculated tension matches with the corresponding indicator of tension in cases where the difference between them does not exceed 5%.
The calculations showed that for the post-Soviet countries, a good coincidence was obtained between the calculated values of the people tension and the normalized level of homicide rate. The coincidence is satisfactory only on average.
The following main results was obtained at the work: under the influence of some «significant» events in 40% of post-Soviet countries, there was a rapid change in the nature of interaction between the elite and the people; regional feature have some influence on the elite–people interaction; the type of government does not significantly affect the elite–people interaction; the method for assessing the stability of the country by the value of the model coefficients is proposed.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Ключевые слова: гетерогенные агенты, ожидания, идиосинкратические шоки, агрегированная неопределенность, теневая экономика, неформальный сектор экономики, легальный сектор экономики, сектор домашних хозяйств, байесовский метод, общее экономическое равновесие.
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
Ключевые слова: машинное обучение, распознавание жестов, человеко-машинный интерфейс, электромиография, ансамбль методов, градиентный бустинг, метод $k$-ближайших соседей, дерево решений.
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
-
Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.
Ключевые слова: криптовалюты, Twitter, машинное обучение, обработка естественного языка, векторизация, dense модель, логистическая регрессия, случайный лес, KNN, наивный байесовский классификатор.
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
-
Сравнительный анализ статистических методов классификации научных публикаций в области медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 921-933В работе проведено сравнение различных методов машинной классификации научных текстов по тематическим разделам на примере публикаций в профильных медицинских журналах, выпускаемых издательством Springer. Исследовался корпус текстов по пяти разделам: фармакология/токсикология, кардиология, иммунология, неврология и онкология. Рассматривались как методы поверхностной классификации, основанные на анализе аннотаций и ключевых слов, так и методы классификации на основе обработки собственно текстов. Были применены методы байесовской классификации, опорных векторов и эталонных буквосочетаний. Показано, что наилучшую точность имеет метод классификации на основе создания библиотеки эталонов буквенных триграмм, отвечающих текстам определенной тематики, а семантические методы уступают ему по точности. Выяснилось, что применительно к рассматриваемому корпусу текстов байесовский метод дает ошибку порядка 20 %, метод опорных векторов имеет ошибку порядка 10 %, а метод близости распределения текста к трехбуквенному эталону тематики дает ошибку порядка 5 %, что позволяет ранжировать эти методы для использования искусственного интеллекта в задачах классификации текстов по отраслевым специальностям. Существенно, что при анализе аннотаций метод опорных векторов дает такую же точность, что и при анализе полных текстов, что важно для сокращения числа операций для больших корпусов текстов.
Comparative analysis of statistical methods of scientific publications classification in medicine
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 921-933In this paper the various methods of machine classification of scientific texts by thematic sections on the example of publications in specialized medical journals published by Springer are compared. The corpus of texts was studied in five sections: pharmacology/toxicology, cardiology, immunology, neurology and oncology. We considered both classification methods based on the analysis of annotations and keywords, and classification methods based on the processing of actual texts. Methods of Bayesian classification, reference vectors, and reference letter combinations were applied. It is shown that the method of classification with the best accuracy is based on creating a library of standards of letter trigrams that correspond to texts of a certain subject. It is turned out that for this corpus the Bayesian method gives an error of about 20%, the support vector machine has error of order 10%, and the proximity of the distribution of three-letter text to the standard theme gives an error of about 5%, which allows to rank these methods to the use of artificial intelligence in the task of text classification by industry specialties. It is important that the support vector method provides the same accuracy when analyzing annotations as when analyzing full texts, which is important for reducing the number of operations for large text corpus.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"