Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'A/T-треки':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  2. Алексеенко А.Е., Холодов Я.А., Холодов А.С., Горева А.И., Васильев М.О., Чехович Ю.В., Мишин В.Д., Старожилец В.М.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203

    В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  3. Киселев С.С., Комаров В.М., Масулис И.С., Озолинь О.Н.
    Распределение мононуклеотидных повторов в бактериальных хромосомах: A/T-треки преобладают над G/C-треками
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 183-187

    В данной работе исследовано распределение мононуклеотидных треков разной длины в 342 хромосомах эубактерий и 69 хромосомах архей. Несмотря на то, что число анализируемых повторов проявляет зависимость от нуклеотидного состава, в 73 % случаев (301 хромосома, в том числе и в 90 хромосомах, обогащенных GC-парами) было обнаружено преобладание poly(dA)n- и poly(dT)n-треков над poly(dG)n- и poly(dC)n-треками. В природных ДНК число А/Т-треков чаще всего в 2 раза выше, чем в случайных нуклеотидных последовательностях с аналогичным AT/GC-составом и длиной. Обсуждаются возможные причины появления подобной асимметрии в распределениях.

    Просмотров за год: 4.
  4. Ососков Г.А., Бакина О.В., Баранов Д.А., Гончаров П.В., Денисенко И.И., Жемчугов А.С., Нефедов Ю.А., Нечаевский А.В., Никольская А.Н., Щавелев Е.М., Ван Л., Сунь Ш., Чжан Я.
    Нейросетевая реконструкция треков частиц для внутреннего CGEM-детектораэк сперимента BESIII
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1361-1381

    Реконструкция траекторий заряженных частиц в трековых детекторах является ключевой проблемой анализа экспериментальных данных для физики высоких энергий и ядерной физики. Поток данных в современных экспериментах растет день ото дня, и традиционные методы трекинга уже не в состоянии соответствовать этим объемам данных по скорости обработки. Для решения этой проблемы нами были разработаны два нейросетевых алгоритма, использующих методы глубокого обучения, для локальной (каждый трек в отдельности) и глобальной (все треки в событии) реконструкции треков применительно к данным трекового GEM-детектора эксперимента BM@N ОИЯИ. Преимущество глубоких нейронных сетей обусловлено их способностью к обнаружению скрытых нелинейных зависимостей в данных и возможностью параллельного выполнения операций линейной алгебры, лежащих в их основе.

    В данной статье приведено описание исследования по обобщению этих алгоритмов и их адаптации к применению для внутреннего поддетектора CGEM (BESIII ИФВЭ, Пекин). Нейросетевая модель RDGraphNet для глобальной реконструкции треков, разработанная на основе реверсного орграфа, успешно адаптирована. После обучения на модельных данных тестирование показало обнадеживающие результаты: для распознавания треков полнота (recall) составила 98% и точность (precision) — 86%. Однако адаптация «локальной» нейросетевой модели TrackNETv2 потребовала учета специфики цилиндрического детектора CGEM (BESIII), состоящего всего из трех детектирующих слоев, и разработки дополнительного нейроклассификатора для отсева ложных треков. Полученная программа TrackNETv2.1 протестирована в отладочном режиме. Значение полноты на первом этапе обработки составило 99%. После применения классификатора точность составила 77%, при незначительном снижении показателя полноты до 94%. Данные результаты предполагают дальнейшее совершенствование модели локального трекинга.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.