Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.Просмотров за год: 31. -
Функция Ляпунова как инструмент исследования когнитивных и регуляторных процессов организма
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 449-456Просмотров за год: 4. Цитирований: 5 (РИНЦ).Когнитивные и регуляторные процессы в организме обеспечиваются функционированием нескольких различных сетевых систем — нервной, эндокринной, иммунной, генной, которые, однако, тесно связаны между собой и образуют единую нейрогеногуморальную когнитивно-регуляторную динамическую сеть организма. Дается обзор работ, показывающих, что с этой сетью можно связать соответствующую ей функцию Ляпунова (функцию энергии, потенциальную функцию), анализ которой, в силу ее геометрической наглядности, позволяет легко обнаружить ряд общих закономерностей, касающихся когнитивной и регуляторной деятельности организма.
-
Оценка максимальных значений выхода биомассы, основанная на материально-энергетическом балансе метаболизма клеток
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 723-750Просмотров за год: 2.Выход биомассы — отношение вновь синтезированного вещества растущих клеток к количеству потребленного субстрата — источника вещества и энергии для роста клеток. Выход является характеристикой эффективности конверсии субстрата в биомассу. Эта конверсия выполняется метаболизмом, который является полным множеством биохимических реакций, происходящих в клетках.
В этой работе заново рассмотрена проблема предсказания максимального выхода роста живых клеток, основанная на балансе всего метаболизма клеток и его фрагментов, названных парциальными обменами (ПО). Для рассмотрения задачи использованы следующие ПО. При росте на любом субстрате мы рассматриваем стандартный конструктивный обмен (СКО), который состоит из одинаковых метаболических путей при росте различных организмов на любом субстрате. СКО начинается с нескольких стандартных соединений (узловых метаболитов): глюкоза, ацетил-КоА, $\alpha$-кетоглутарат, эритрозо-4-фосфат, оксалоацетат, рибозо-5-фосфат, 3-фосфоглицерат, фосфоенолпируват, пируват. Также рассматриваем передний метаболизм (ПМ) — остальная часть полного метаболизма. Первый ПО потребляет макроэргические связи (МЭС), образованные вторым ПО. В данной работе мы рассматриваем обобщенный вариант ПМ, когда учтены возможное наличие внеклеточных продуктов метаболизма и возможность как аэробного, так и анаэробного роста. Вместо отдельных балансов образования каждого узлового метаболита, как это было сделано в нашей предыдущей работе, данная работа имеет дело сразу со всем множеством этих метаболитов. Это делает решение задачи более компактным и требующим меньшего числа биохимических величин и значительно меньшего вычислительного времени. Выведено уравнение, выражающее максимальный выход биомассы через удельные количества МЭС, образованных и потребленных парциальными обменами. Оно содержит удельное потребление МЭС стандартным конструктивным обменом, которое является универсальным биохимическим параметром, применимым к широкому диапазону организмов и субстратов роста. Чтобы корректно определить этот параметр, полный конструктивный обмен и его передняя часть рассмотрены для роста клеток на глюкозе как наиболее изученном субстрате. Здесь мы использовали открытые ранее свойства элементного состава липидной и безлипидной частей биомассы. Было сделано численное исследование влияния вариаций соотношений между потоками через различные узловые метаболиты. Оно показало, что потребности СКО в макроэргических связях и NAD(P)H практически являются константами. Найденный коэффициент «МЭС/образованная биомасса» является эффективным средством для нахождения оценок максимального выхода биомассы из субстратов, для которых известен их первичный метаболизм. Вычисление отношения «АТФ/субстрат», необходимого для оценки выхода биомассы, сделано с помощью специального пакета компьютерных программ GenMetPath.
-
Концентрация мощных акустических пучков в вязкоупругом материале с неоднородным распределением воздушных полостей
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 517-533Просмотров за год: 6.Известно, что скорость звука в средах, содержащих сильно сжимаемые включения, например воздушные поры в упругой среде или газовые пузырьки в жидкости, может существенно уменьшиться по сравнению с однородной средой. Эффективный нелинейный параметр такой среды, описывающий проявление нелинейных эффектов, возрастает в сотни и тысячи раз из-за большого различия сжимаемости включений и окружающей среды. Пространственное изменение концентрации таких включений приводит к переменной локальной скорости звука, что, в свою очередь, вызывает пространственно-временное перераспределение акустической энергии в волне и искажению ее временных профилей и поперечной структуры ограниченных пучков. В частности, могут образовываться области фокусировок. При определенных условиях возможно формирование звукового канала, обеспечивающего волноводное распространение акустических сигналов в среде с подобными включениями. Таким образом, возможно управление пространственно-временной структурой акустических волн с помощью введения сильно сжимаемых включений с заданным пространственным распределением и концентрацией. Целью работы является исследование распространения акустических волн в резиноподобном материале с неоднородным пространственным распределением воздушных полостей. Основной задачей является развитие адекватной теории таких структурно-неоднородных сред, теории распространения нелинейных акустических волн и пучков в этих средах, расчет акустических полей и выявление связи параметров среды и включений с характеристиками распространяющихся волн. В работе выведено эволюционное самосогласованное уравнение с интегро-дифференциальным членом, описывающее в низкочастотном приближении распространение интенсивных акустических пучков в среде с сильно сжимаемым полостями. В этом уравнении учтено вторичное акустическое поле, вызванное динамикой колебаний полостей. Развит метод, позволяющий получить точные аналитические решения для поля нелинейного акустического пучка на его оси и правильно рассчитать поле в фокальных областях. Полученные результаты применены для теоретического моделирования материала с неоднородным распределением сильно сжимаемых включений.
-
Оценка влияния простейшего типа многочастичных взаимодействий на примере решеточной модели адсорбционного слоя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 445-458Самоорганизация молекул на твердой поверхности является одним из перспективных направлений по созданию материалов с уникальными магнитными, электрическими и оптическими свойствами. Они могут широко применяться в таких областях, как электроника, оптоэлектроника, катализ и биология. Однако на структуру и физико-химические свойства адсорбирующихся молекул оказывает влияние множество параметров, которые необходимо учитывать при изучении процесса самоорганизации молекул. В связи с этим экспериментальное исследование свойств новых материалов данного типа оказывается дорогостоящим, а также довольно часто его проведение затруднительно по различным причинам. В таких ситуациях целесообразнее воспользоваться методами математического моделирования. В рассматриваемых адсорбционных системах одним из параметров является многочастичное взаимодействие, которое часто не учитывается в моделировании из-за усложнения расчетов. В данной работе мы провели оценку влияния многочастичных взаимодействий на общую энергию системы с помощью метода трансфер-матрицы и программного комплекса Materials Studio. За основу была взята модель моноцентровой адсорбции молекул на треугольной решетке с учетом ближайших взаимодействий. Для этой модели были построены фазовые диаграммы в основном состоянии и проведены расчеты ряда термодинамических характеристик (степени покрытия $\theta$, энтропии $S$, восприимчивости $\xi $) при ненулевых температурах. Было обнаружено образование всех четырех упорядоченных структур (решеточный газ с $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ с $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ с $\theta = \frac{2}{3}$, плотнейшая фаза с $\theta = 1$) в системе, учитывающей исключительно двухчастичные взаимодействия, и отсутствие фазы $(\sqrt{3}\times \sqrt{3}) R30^\circ$ при учете только трехчастичных взаимодействий. На основе квантово-механических расчетов на примере атомистической модели адсорбционного слоя тримезиновой кислоты мы определили, что в такой системе вклад многочастичного характера взаимодействий составляет 11,44% от энергии двухчастичных взаимодействий. При таких значениях в решеточной модели возникают только количественные отличия, проявляющиеся в смещении области перехода из структуры $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ в плотнейшую фазу вправо на 38,25% при $\frac{\varepsilon}{RT} = 4$ и влево на 23,46% при $\frac{\varepsilon}{RT} = −2$.
-
Молекулярная динамика протофиламентов тубулина и влияние таксола на их изгибную деформацию
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 503-512Несмотря на широкое распространение и применение препаратов химиотерапии рака, остаются невыясненными молекулярные механизмы действия многих из них. Известно, что некоторые из этих препаратов, например таксол, оказывают влияние на динамику сборки микротрубочек и останавливают процесс клеточного деления в профазе-прометафазе. В последнее время появились новые пространственные структуры микротрубочек и отдельных олигомеров тубулина, связанных с различными регуляторными белками и препаратами химиотерапии рака. Однако знание пространственной структуры само по себе не дает информации о механизме действия препаратов.
В работе был применен метод молекулярной динамики для исследования поведения связанных с таксолом олигомеров тубулина и использована разработанная нами ранее методика анализа конформационных изменений протофиламентов тубулина, основанная на вычислении модифицированных углов Эйлера. На новых структурах фрагментов микротрубочек было продемонстрировано, что протофиламенты тубулина изгибаются не в радиальном направлении, как предполагают многие исследователи, а под углом примерно 45◦ к радиальному направлению. Однако в присутствии таксола направление изгиба смещается ближе к радиальному направлению. Было выявлено отсутствие значимой разницы между средними значениями углов изгиба и скручивания на новых структурах тубулина при связывании с различными естественными регуляторными лигандами, гуанозинтрифосфатом и гуанозиндифосфатом. Было обнаружено, что угол изгиба внутри димера больше, чем угол междимерного изгиба во всех проанализированных траекториях. Это указывает на то, что основная доля энергии деформации запасается внутри димерных субъединиц тубулина, а не на междимерном интерфейсе. Анализ недавно опубликованных структур тубулина указал на то, что присутствие таксола в кармане бета-субъединицы тубулина аллостерически уменьшает жесткость олигомера тубулина на скручивание, что могло бы объяснить основной механизм воздействия таксола на динамику микротрубочек. Действительно, снижение крутильной жесткости дает возможность сохранить латеральные связи между протофиламентами, а значит, должно приводить к стабилизации микротрубочек, что и наблюдается в экспериментах. Результаты работы позволяют пролить свет на феномен динамической нестабильности микротрубочек и приблизиться к пониманию молекулярных механизмов клеточного деления.
Ключевые слова: тубулин, таксол, микротрубочки, динамическая нестабильность, углы Эйлера, молекулярное моделирование.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"