Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'электрические параметры':
Найдено статей: 23
  1. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

  2. Карпаев А.А., Алиев Р.Р.
    Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864

    Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.

  3. Сергиенко А.В., Акименко С.С., Карпов А.А., Мышлявцев А.В.
    Оценка влияния простейшего типа многочастичных взаимодействий на примере решеточной модели адсорбционного слоя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 445-458

    Самоорганизация молекул на твердой поверхности является одним из перспективных направлений по созданию материалов с уникальными магнитными, электрическими и оптическими свойствами. Они могут широко применяться в таких областях, как электроника, оптоэлектроника, катализ и биология. Однако на структуру и физико-химические свойства адсорбирующихся молекул оказывает влияние множество параметров, которые необходимо учитывать при изучении процесса самоорганизации молекул. В связи с этим экспериментальное исследование свойств новых материалов данного типа оказывается дорогостоящим, а также довольно часто его проведение затруднительно по различным причинам. В таких ситуациях целесообразнее воспользоваться методами математического моделирования. В рассматриваемых адсорбционных системах одним из параметров является многочастичное взаимодействие, которое часто не учитывается в моделировании из-за усложнения расчетов. В данной работе мы провели оценку влияния многочастичных взаимодействий на общую энергию системы с помощью метода трансфер-матрицы и программного комплекса Materials Studio. За основу была взята модель моноцентровой адсорбции молекул на треугольной решетке с учетом ближайших взаимодействий. Для этой модели были построены фазовые диаграммы в основном состоянии и проведены расчеты ряда термодинамических характеристик (степени покрытия $\theta$, энтропии $S$, восприимчивости $\xi $) при ненулевых температурах. Было обнаружено образование всех четырех упорядоченных структур (решеточный газ с $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ с $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ с $\theta = \frac{2}{3}$, плотнейшая фаза с $\theta = 1$) в системе, учитывающей исключительно двухчастичные взаимодействия, и отсутствие фазы  $(\sqrt{3}\times \sqrt{3}) R30^\circ$ при учете только трехчастичных взаимодействий. На основе квантово-механических расчетов на примере атомистической модели адсорбционного слоя тримезиновой кислоты мы определили, что в такой системе вклад многочастичного характера взаимодействий составляет 11,44% от энергии двухчастичных взаимодействий. При таких значениях в решеточной модели возникают только количественные отличия, проявляющиеся в смещении области перехода из структуры $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ в плотнейшую фазу вправо на 38,25% при $\frac{\varepsilon}{RT} = 4$ и влево на 23,46% при $\frac{\varepsilon}{RT} = −2$.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.