Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'численный метод':
Найдено статей: 328
  1. Говорухин В.Н., Филимонова А.М.
    Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426

    Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.

    В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.

    Просмотров за год: 16.
  2. Долгов Е.В., Колосов Н.С., Фирсов А.А.
    Исследование влияния искрового разряда на смешение струи газообразного топлива со сверхзвуковым воздушным потоком
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 849-860

    В работе представлены результаты численного моделирования влияния протяженного искрового разряда на динамику перемешивания инжектируемой газовой струи со сверхзвуковым воздушным потоком. Расчеты проводились в программном комплексе FlowVision. Подача топлива осуществляется при помощи инжектора, расположенного на стенке канала, а разряд организован вблизи стенки ниже по потоку относительно инжектора. Моделирование электрического искрового разряда выполнено при помощи объемного источника тепла. С целью описания принципиального вида плазменного актуатора для ускорения перемешивания в сверхзвуковом потоке (число Маха М = 2) в ходе исследования выполнено варьирование энерговклада в разряд в диапазоне 100–500 мДж на один импульс, а также определено влияние формы и местоположения разряда относительно топливного инжектора. Проведено исследование режимов инжекции топлива в сверхзвуковой воздушный поток и найден оптимальный режим истечения струи газа для исследования влияния искрового разряда на смешение. Разработан метод анализа картины возмущений границы раздела «топливо–окислитель», вызванных работой импульсного искрового разряда. Подготовлена программа в среде LabView для получения количественной характеристики для дальнейшего сравнения полученных результатов с экспериментальными данными.

    Результаты моделирования позволяют сделать вывод, что протяженный искровой разряд, расположенный ниже по потоку относительно инжектора и расположенный вдоль потока, обеспечивает максимальное увеличение границы раздела между струей топлива и основным потоком. Типичная частота повторения импульсов разряда в импульсно-периодическом режиме должна составлять более 6 кГц при длине разряда ~10 мм, чтобы обеспечить постоянное влияние на смешение в потоке со скоростью 500 м/с.

  3. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

  4. В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.

    Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.

  5. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

  6. Кленов С.Л., Вегерле Д., Кернер Б.С., Шрекенберг М.
    Обнаружение медленно движущихся или неожиданно возникающих неподвижных «бутылочных горлышек» в транспортномпо токе на основе теории трех фаз
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 319-363

    Разработан метод обнаружения неожиданно возникающих «бутылочных горлышек», которые появляются в транспортном потоке внезапно и неожиданно для водителей. Такие неожиданно возникающие бутылочные горлышки могут двигаться, если они вызваны медленно движущейся автомашиной (тип МВ), или же оставаться неподвижными, если они вызваны внезапно остановившейся автомашиной (тип SV), например, в результате аварии. На основе численного моделирования стохастической микроскопической модели транспортного потока в рамках теории трех фаз Кернера показано, что даже при использовании небольшого процента «зондирующих» (измеряющих) автомашин (FCD), случайным образом распределенных в транспортном потоке, возможно надежное обнаружение неожиданно возникающих бутылочных горлышек. Найдено, что временная зависимость вероятности прогноза бутылочных горлышек типа МВ или SV, а также точность определения их положения существенно зависят от последовательности фазовых переходов от свободного (F) к синхронизованному (S) транспортному потоку (F→S-переход) и обратных фазовых переходов (S→F-переход), а также от колебаний скорости автомашин в синхронизованном потоке вблизи бутылочного горлышка. Предлагаемая численная методика позволяет как обнаруживать неожиданно возникшее бутылочное горлышко на автомагистрали, так и различать, связано ли такое бутылочное горлышко с медленно движущейся автомашиной (МВ) или же с внезапно остановившейся автомашиной (SV).

  7. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

  8. Маликов З.М., Мадалиев М.Э.
    Численное моделирование течения в двухмерном плоском диффузоре на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1149-1160

    В статье представлены результаты численного исследования структуры течения в двухмерном плоском диффузоре. Особенностью диффузоров является то, что в них наблюдается сложное анизотропное турбулентное течение, которое возникает за счет рециркуляционных потоков. Турбулентные модели RANS, в основе которых лежит гипотеза Буссинеска, не способны описывать с достаточной точностью течение в диффузорах. Потому что гипотеза Буссинеска основана на изотропной турбулентности. Поэтому для расчета анизотропных турбулентных течений привлекаются модели, в которых не используется данная гипотеза. Одним из таких направлений в моделировании турбулентности являются методы рейнольдсовых напряжений. Эти методы сложны и требуют довольно больших вычислительных ресурсов. В работе для исследования течения в плоском диффузоре использована сравнительно недавно разработанная двухжидкостная модель турбулентности. Данная модель разработана на основе двухжидкостного подхода к проблеме турбулентности. В отличие от подхода Рейнольдса двухжидкостный подход позволяет получить замкнутую систему уравнений турбулентности с использованием динамики двух жидкостей. Следовательно, если в RANS-моделях для замыкания используются эмпирические уравнения, то в двухжидкостной модели используемые уравненияя вляются точными уравнениями динамики. Одно из главных преимуществ двухжидкостной модели заключаетсяв том, что она способна описывать сложные анизотропные турбулентные течения. В работе полученные численные результаты для профилей продольной скорости, турбулентных напряжений в различных сечениях канала, а также коэффициента трениясравнив аются с известными экспериментальными данными. Для демонстрации достоинства использованной модели турбулентности представлены и численные результаты метода рейнольдсовых напряжений EARSM. Для численной реализации систем уравнений двухжидкостной модели использована нестационарная система уравнений, решение которой асимптотически приближалось к стационарному решению. Дляэтой цели использована конечно-разностная схема, где вязкостные члены аппроксимировались центральной разностью неявным образом, а для конвективных членов использована явная схема против потока второго порядка точности. Результаты получены для числа Рейнольдса Re = 20 000. Показано, что двухжидкостная модель, несмотря на использование равномерной расчетной сетки без сгущенияо коло стенок, способна давать более точное решение, чем достаточно сложный метод рейнольдсовых напряжений с большим разрешением расчетных сеток.

  9. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

  10. Борисова О.В., Борисов И.И., Нуждин К.А., Ледюков А.М., Колюбин С.А.
    Численное проектирование механизмов замкнутой кинематики: синтез эргономичного модуля экзоскелета для поддержки спины
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1269-1280

    Статья посвящена задаче со-дизайна исполнительных механизмов робототехнических систем, назначение которых заключается в контактном адаптивном взаимодействии с неструктурированным окружением, в том числе человеком. Со-дизайн заключается в одновременной оптимизации механики и системы управления механизмом, обеспечивающих оптимальное поведение и производительность системы. Под оптимизацией механики понимается поиск оптимальных структуры, геометрических параметров, распределения массы среди звеньев и их податливости; под управлением понимается поиск траекторий движения сочленений механизмов. В работе представлен обобщенный метод структурно-параметрического синтеза неполноприводных механизмов замкнутой кинематики, применимый для создания механизмов для робототехнических систем разного назначения; например, ранее он был апробирован для со-дизайна механизмов пальцев антропоморфных захватов и механизмов ног галопирующих роботов. Метод реализует концепцию морфологического расчета законов управления за счет особенностей механической конструкции, минимизируя управляющее воздействие со стороны алгоритмической составляющей системы управления, что позволяет снизить требования к уровню технического оснащения и понизить энергопотребление. В данной работе предложен- ный метод апробирован для оптимизации структуры и геометрических параметров пассивного механизма модуля поддержки спины промышленного экзокостюма. Движения человека разнообразны и недетерминированы, если сравнивать с движениями автономных роботов, что усложняет проектирование носимых робототехнических устройств. Для снижения травматизма, усталости и повышения производительности рабочих синтезируемый промышленный экзокостюм должен не только компенсировать нагрузки, но и не мешать естественным движениям человека. Для проверки разработанного экзокостюма были использованы кинематические данные захвата движения всего тела человека при выполнении промышленных операций. Предложенный метод структурно-параметрического синтеза был использован для повышения эргономичности носимого робототехнического устройства. Верификация синтезированного механизма произведена с помощью имитационного моделирования: пассивный модуль спины прикреплен к двум геометрическим примитивам, осуществляющим движение грудной клетки и таза оператора экзокостюма в соответствии с данными захвата движения. Эргономичность модуля спины количественно измерена расстоянием между сочленениями, соединяющими верхнюю и нижнюю части экзокостюма; минимизация отклонения от среднего значения соответствует меньшей степени ограниченности движения оператора,     т. е. большей эргономичности. В статье приведены подробное изложение метода структурно-параметрического синтеза, пример апробации метода для создания модуля экзокостюма и результаты имитационного моделирования.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.