Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'численное решение':
Найдено статей: 293
  1. Сивунов А.В., Масловская А.Г.
    Численное моделирование процессов зарядки при диагностике сегнетоэлектриков методами растровой электронной микроскопии
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 107-118

    Предложен алгоритм решения прикладной задачи расчета электрических характеристик полевых эффектов инжектированных зарядов в сегнетоэлектриках при электронном облучении, основанный на реализации детерминированной модели методом конечных элементов с учетом результатов моделирования транспорта электронов методом Монте-Карло. Разработано программное приложение для проведения вычислительного эксперимента.

    Цитирований: 2 (РИНЦ).
  2. Крайнов А.Ю., Моисеева К.М., Палеев Д.Ю.
    Численное исследование сгорания полидисперсной газовзвеси угольной пыли в сферическом объеме
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 531-539

    Разработана физико-математическая модель горения полидисперсной реагирующей газовзвеси. Физико-математическая постановка задачи учитывала выход летучих компонентов из частиц при их нагреве, излучение от частиц в окружающую среду, теплоотдачу от газа в окружающую среду через боковую поверхность сферического объема, зависимость коэффициента теплопроводности газа от температуры. Учитывалась полидисперсность угольной пыли: задавалось число фракций N. Фракции подразделялись на инертные и реагирующие частицы нескольких размеров. В уравнении изменения плотности окислителя учитывался расход окислителя на две реакции: гетерогенную на поверхности частиц и гомогенную в газе. Экзотермические химические реакции в газе определялись по закону Аррениуса с кинетикой второго порядка. Гетерогенная реакция на частицах задавалась реакцией первого порядка. Задача решалась методом Рунге–Кутты–Мерсона с автоматическим выбором шага. Достоверность расчетов проверялась путем решения частных постановок задачи. Было выполнено численное исследование задачи при варьировании процентного содержания летучих и инертных частиц в угольной пыли, а так же суммарной массы частиц. Определено влияние процентного содержания летучих и инертных частиц на характер горения полидисперсной газовзвеси угольной пыли в метано-воздушной смеси. Результаты показали, что при малых массах угольной пыли увеличение процентного содержания летучих частиц в смеси приводит к увеличению максимального давления в объеме. При больших массах угольной пыли с увеличением процентного содержания летучих частиц в пыли величина максимального давления уменьшается. Увеличение процентного содержания инертных частиц в смеси приводит к уменьшению максимального давления, достигаемого в системе. Было определено, что существует экстремальное значение радиуса крупных частиц, для которого достигается наибольшее давление в объеме.

    Просмотров за год: 2. Цитирований: 7 (РИНЦ).
  3. Фаворская А.В., Голубев В.И.
    О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771

    В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.

    Просмотров за год: 11.
  4. Кутовский Н.А., Нечаевский А.В., Ососков Г.А., Пряхина Д.И., Трофимов В.В.
    Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963

    В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.

    Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  5. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Просмотров за год: 30.
  6. В результате всесторонних теоретических исследований в работе создана достаточно подробная физико-математическая модель возмущенной области, образованной в нижнем D-слое ионосферы под действием направленного потока радиоизлучения от наземного стенда мегагерцового диапазона частот. Модель основана на рассмотрении широкого круга кинетических процессов с учетом их неравновесности и в двухтемпературном приближении для описания трансформации энергии радиолуча, поглощаемой электронами. В работе взяты исходные данные по радиоизлучению, достигнутые к настоящему времени на наиболее мощных радионагревных стендах. Кратко описаны их основные характеристики и принципы действия, а также особенности высотного распределения поглощаемой электромагнитной энергии радиолуча. Показана определяющая роль D-слоя ионосферы в поглощении энергии радиолуча. На основе теоретического анализа получены аналитические выражения для вклада различных неупругих процессов в распределение поглощаемой энергии, позволяющая достаточно полно и корректно описывать вклад каждого из учитываемых процессов. В работе учитывается более 60 компонент, для описания изменения концентраций использовалось около 160 реакций. Все реакции разбиты на пять групп в соответствии с их физическим содержанием: ионизационно-химический блок, блок возбуждения метастабильных электронных состояний, кластерный блок, блок возбуждения колебательных состояний и блок примесей. Блоки взаимосвязаны между собой и могут рассчитываться как совместно, так и раздельно. Показано, что в дневных и ночных условиях поведение параметров возмущенной области существенно различно при одной и той же плотности потока радиоизлучения: в дневных условиях максимум электронной концентрации и температуры приходиться на высоте ~ 45–55 км; в ночных — на высоты ~ 80 км, при этом температура тяжелых частиц быстро возрастает, что приводит к возникновению газодинамического течения. Поэтому был разработан специальный численный алгоритм для совместного решения двух основных задач рассматриваемой проблемы: кинетической и газодинамической. На основе высотного и временного поведения концентраций и температур алгоритм позволяет определить ионизацию и свечение ионосферы в видимом и ИК-диапазоне спектра, что дает возможность оценить влияние возмущенной области на радиотехнические и оптико-электронные средства, используемые в космической технике.

    Просмотров за год: 17.
  7. Белотелов Н.В., Коноваленко И.А., Назарова В.М., Зайцев В.А.
    Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850

    В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).

    Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.

    Просмотров за год: 32.
  8. Андрущенко В.А., Ступицкий Е.Л.
    Численные исследования структуры возмущенных областей, образованных мощными взрывами на различных высотах. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 97-140

    В основу обзора положены некоторые ранние работы авторов, представляющие определенный научный, методический и практический интерес; наибольшее внимание уделено работам последних лет, где выполнены достаточно подробные численные исследования не только одиночных, но также двойных и множественных взрывов в широком диапазоне высот и условий в окружающей среде. Так как в нижней атмосфере ударная волна мощного взрыва является одним из главных поражающих факторов, то в обзоре большое внимание уделено физическому анализу их распространения и взаимодействия. С помощью разработанных авторами трехмерных алгоритмов рассмотрены интересные с физической точки зрения эффекты интерференции и дифракции нескольких ударных волн в отсутствие и при наличии подстилающей поверхности различной структуры. Определены количественные характеристики в области их максимальных значений, что представляет известный практический интерес. Для взрывов в плотной атмосфере найдены некоторые новые аналитические решения на основе метода малых возмущений, удобные для приближенных расчетов. Для ряда условий показана возможность использования автомодельных свойств уравнений первого и второго рода для решения задач о развитии взрыва.

    На основе численного анализа показано принципиальное изменение в структуре развития возмущенной области при изменении высоты взрыва в диапазоне 100–120 км. На высотах более 120 км геомагнитное поле начинает влиять на развитие взрыва, поэтому даже для одиночного взрыва картина плазменного течения через несколько секунд становится существенно трехмерной. Для расчета взрывов на высотах 120–1000 км под руководством академика Холодова А. С. был разработан специальный трехмерный численный алгоритм на основе МГД-приближения. Были выполнены многочисленные расчеты и впервые получена достаточно подробная картина трехмерного течения плазмы взрыва с образованием через 5–10 с восходящей струи, направленной в меридиональной плоскости примерно по геомагнитному полю. После некоторой модификации данный алгоритм использовался для расчета двойных взрывов в ионосфере, разнесенных на некоторое расстояние. Взаимодействие между ними осуществлялось как плазменными потоками, так и через геомагнитное поле. Некоторые результаты приведены в данном обзоре и подробно изложены в оригинальных статьях.

  9. Королев С.А., Майков Д.В.
    Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367

    В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.

    Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.

    В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.

  10. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.