Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'функция отклика':
Найдено статей: 10
  1. Гайко В.А.
    Глобальный бифуркационный анализ рациональной системы Холлинга
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545

    В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.

    Просмотров за год: 11.
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  4. Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.

    Просмотров за год: 10.
  5. Епифанов А.В., Цибулин В.Г.
    О динамике косимметричных систем хищников и жертв
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813

    Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.

    Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.

    Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.

    Просмотров за год: 12. Цитирований: 3 (РИНЦ).
  6. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

  7. Хрущев С.С., Фурсова П.В., Плюснина Т.Ю., Ризниченко Г.Ю., Рубин А.Б.
    Анализ скорости электронного транспорта через фотосинтетический цитохромный $b_6 f$ -комплекс
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 997-1022

    Рассматривается основанный на методах линейной алгебры подход к анализу скорости электронного транспорта через цитохромный $b_6 f$-комплекс. В предложенном подходе зависимость квазистационарного потока электронов через комплекс от степени восстановленности пулов мобильных переносчиков электрона выступает в качестве функции отклика, характеризующей этот процесс. Разработано программное обеспечение на языке программирования Python, позволяющее построить основное кинетическое уравнение для комплекса по схеме элементарных реакций и вычислить квазистационарные скорости электронного транспорта через комплекс и динамику их изменения в ходе переходного процесса. Вычисления проводятся в многопоточном режиме, что позволяет эффективно использовать ресурсы современных вычислительных систем и за сравнительно небольшое время получать данные о функционировании комплекса в широком диапазоне параметров. Предложенный подход может быть легко адаптирован для анализа электронного транспорта в других компонентах фотосинтетической и дыхательной электрон-транспортной цепи, а также других процессов в сложных мультиферментных комплексах, содержащих несколько реакционных центров. Для параметризации модели цитохромного $b_6 f$-комплекса использованы данные криоэлектронной микроскопии и окислительно-восстановительного титрования. Получены зависимости квазистационарной скорости восстановления пластоцианина и окисления пластохинона от степени восстановленности пулов мобильных переносчиков электрона и проанализирована динамика изменения скорости в ответ на изменение редокс-состояния пула пластохинонов. Результаты моделирования находятся в хорошем согласовании с имеющимися экспериментальными данными.

  8. Гончаренко В.М., Шаповал А.Б.
    Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 825-836

    В статье показано, что базовые свойства некоторых моделей монополистической конкуренции описываются с помощью семейств гипергеометрических функций. Результаты получены построением модели общего равновесия в многосекторной экономике, производящей дифференцированное благо в $n$ высокотехнологичных секторах, в которых однопродуктовые фирмы конкурируют монополистически, используя одинаковые технологии. Однородный (традиционный) сектор характеризуется совершенной конкуренцией. Работники мотивированы найти работу в высокотехнологичных секторах, так как заработная плата там выше, однако рискуют остаться безработными. Безработица сохраняется в равновесии за счет несовершенства рынка труда. Заработная плата устанавливается фирмами в высокотехнологичных секторах в результате переговоров с работниками. Предполагается, что индивиды однородны как потребители, обладая одинаковыми предпочтениями, которые задаются сепарабельной функцией полезности общего вида. В статье найдены условия, при которых общее равновесие в построенной модели существует и единственно. Условия сформулированы в терминах эластичности замещения $\mathfrak{S}$ между разновидностями дифференцированного блага, которая усреднена по всем потребителям. Найденное равновесие симметрично относительно разновидностей дифференцированного блага. Равновесные переменные представимы в виде неявных функций, свойства которых связаны с введенной авторами эластичностью $\mathfrak{S}$. Полное аналитическое описание равновесных переменных возможно для известных частных случаев функции полезности потребителей, например в случае степенных предпочтений, которые некорректно описывают отклик экономики на изменение размера рынков. Чтобы упростить возникающие неявные функции, мы вводим функции полезности, заданные двумя однопараметрическими семействами гипергеометрических функций. Одно из семейств описывает проконкурентный, а другое — антиконкурентный отклик цен на увеличение размера экономики. Изменение параметра каждого из семейств соответствует перебору всех допустимых значений эластичности $\mathfrak{S}$. В этом смысле гипергеометрические функции исчерпывают естественные функции полезности. Установлено, что с увеличением эластичности замещения между разновидностями дифференцированного блага разница между высокотехнологичным и однородным секторами стирается. Показано, что при большом размере экономики индивиды в равновесии потребляют малое количество каждого товара, как и в случае степенных препочтений. Именно это обстоятельство позволяет приблизить используемые гипергеометрические функции суммой степенных функций в окрестности равновесных значений аргумента. Таким образом, переход от степенных функций полезности к гипергеометрическим, которые аппроксимируются суммой двух степенных функций, с одной стороны, сохраняет все возможности настройки параметров, а с другой — позволяет полностью описать эффекты, связанные с изменением размера секторов экономики.

    Просмотров за год: 10.
  9. Серков Л.А., Красных С.С.
    Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684

    В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.

  10. Алмасри А., Цибулин В.Г.
    Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615

    В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.