Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'фактор':
Найдено статей: 112
  1. Чертов О.Г., Надпорожская М.А.
    Модели динамики органического вещества почв: проблемы и перспективы
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 391-399

    Почва как сложная полифункциональная открытая система является одним из наиболее проблемных объектов для моделирования. Несмотря на значительные успехи в моделировании почвенной системы, существующие модели не отражают все факторы и процессы минерализации и гумификации органического вещества в почве. С учетом опыта создания и широкого применения системы моделей ROMUL и EFIMOD определены проблемы и точки роста в области моделирования динамики органического вещества почв и элементов-биофилов. В работе рассмотрены вопросы дальнейшего теоретического обоснования, улучшения структуры моделей, подготовки и неопределенности исходных данных, включения всей почвенной биоты (микроорганизмов, микро- и мезофауны) как факторов гумусообразования, влияния минералогического состава почв на динамику углерода и азота, гидротермического режима и формирования органического вещества по профилю почвы, вертикальной и горизонтальной миграции органического вещества. Для успешного решения этих задач необходима эффективная обратная связь между разработчиками моделей и экспериментаторами.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  2. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

  3. Лелеков А.С., Тренкеншу Р.П.
    Моделирование динамики макромолекулярного состава микроводорослей в накопительной культуре
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 739-756

    В работе методом математического моделирования проведено исследование механизмов влияния света на скорость роста и макромолекулярный состав накопительной культуры микроводорослей. Показано, что даже при единственном лимитирующем факторе рост микроводорослей сопряжен со значительным изменением биохимического состава биомассы. Отмечено, что существующие математические модели, основанные на принципах ферментативной кинетики, не учитывают возможную смену лимитирующего фактора в процессе увеличения биомассы и не позволяют описать динамику относительного содержания ее биохимических компонентов. В качестве альтернативного подхода предложена двухкомпонентная модель, в основе которой положено предположение о двухстадийности фотоавтотрофного роста. Биомассу микроводорослей можно рассматривать в виде суммы двух макромолекулярных составляющих — структурной и резервной. Предполагается пропорциональность всех структурных компонентов биомассы, что значительно упрощает математические выкладки и верификацию модели. Предлагаемая модель представлена системой двух дифференциальных уравнений: скорость синтеза резервных составляющих биомассы определяется интенсивностью света, а структурных компонентов — потоком резервов на ключевой мультиферментный комплекс. Модель учитывает, что часть резервных компонентов расходуется на пополнение пула макроэргов. Скорости синтеза структурных и резервных форм биомассы заданы линейными сплайнами, которые позволяют учесть смену лимитирующего фактора с ростом плотности накопительной культуры. Показано, что в условиях светового лимитирования накопительную кривую необходимо разделять на несколько областей: неограниченного роста, малой концентрации клеток и оптически плотной культуры. Для каждого участка получены аналитические решения предлагаемой модели, которые выражены в элементарных функциях и позволяют оценить видоспецифические коэффициенты. Проведена верификация модели на экспериментальных данных роста биомассы и динамики относительного содержания хлорофилла $a$ накопительной культуры красной морской микроводоросли Pоrphуridium purpurеum.

  4. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

  5. Андреева А.А., Ананд М., Лобанов А.И., Николаев А.В., Пантелеев М.А.
    Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951

    Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.

    В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.

    Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.

  6. Дубинина М.Г.
    Пространственно-временные модели распространения информационно-коммуникационных технологий
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712

    В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.

    Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.

  7. Горбачев О.Г.
    Вероятностно-статистическая модель страхового капитала
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 231-235

    Обоснована необходимость введения в научный оборот новой экономической категории – страховой капитал. Показано, что страховая деятельность порождает специальную разновидность капитала (как фактора производства) – гарантийный фонд, который назван автором «основной денежный страховой капитал». Установлено, что наряду с общепринятыми свойствами капитала как фактора производства страховой капитал обладает рядом специфических свойств, обусловленных его вероятностно-статистической природой. На основе вероятностно-статистической модели исследована роль страхового капитала в формировании цены на страховую услугу. В частности, показано, что закон убывающей отдачи для страхового капитала не носит универсального характера.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  8. В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.

    Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.

    На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.

  9. Тимирьянова В.М., Лакман И.А., Ларькин М.М.
    Прогнозирование розничной торговли на высокочастотных обезличенных данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734

    Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.

  10. Аронов И.З., Максимова О.В.
    Теоретическое моделирование достижения консенсуса в условиях коалиций на основе регулярных марковских цепей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1247-1256

    Часто решения в социальных группах принимается на основе консенсуса. Это касается, например, проведения экспертизы в техническом комитете по стандартизации (ТК) перед утверждением национального стандарта Росстандартом. Стандарт утверждается в том и только том случае, если обеспечен консенсус в ТК. Такой же подход к разработке стандартов принят практически во всех странах мира, а также на региональном и международном уровне. Ранее опубликованные работы авторов посвящены построению математической модели времени достижения консенсуса в технических комитетах по стандартизации в условиях варьирования числа членов ТК и уровня их авторитарности. Настоящее исследование является продолжением этих работ для случая образования коалиций в работе социальных групп, в том числе технических комитетов по стандартизации. В рамках модели показано, что при наличии коалиций консенсус не достижим. Однако коалиции, как правило, преодолеваются в ходе переговорного процесса, в против- ном случае число принятых стандартов было бы исключительно мало. В работе проанализированы факторы, которые оказывают влияние на преодоление коалиций: величина уступки и индекс влияния коалиции. На основе статистического моделирования регулярных марковских цепей исследуется их воздействие на время обеспечения консенсуса. Доказано, что время достижения консенсуса значимо зависит от величины односторонней уступки коалиции и слабо зависит от размеров коалиций. Построена регрессионная модель зависимости среднего числа согласований от величины уступки. Выявлено, что даже небольшая уступка влечет наступление консенсуса, увеличение размера уступки приводит (при прочих равных факторах) к резкому снижению времени до наступления консенсуса. Показано, что уступка бо́льшей коалиции в отношении малочисленной коалиции не требует в среднем бо́льшего времени до наступления консенсуса. Уступка авторитарного лидера в группе позволяет сократить число согласований и повысить качество консенсуса. Полученные результаты имеют практическую ценность для всех организационных структур, где возникновение коалиций влечет невозможность принятия решений в рамках достижения консенсуса и требует рассмотрения различных способов для выхода на консенсусное решение.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.