Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 20.
-
Движение влекомых наносов над периодическим дном
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 47-60Движение влекомых наносов по дну напорного канала может приводить к потере устойчивости донной поверхности, когда на дне канала возникают донные волны. Исследование процесса развития донных волн связано с возможностью определения характера движения влекомых наносов по дну периодической формы. Несмотря на большое внимание многих исследователей к данной проблеме, вопрос о развитии процесса донных волн остается открытым и в настоящее время. В значительной мере это связано с тем, что при анализе данного процесса многие исследователи используют в своих работах феноменологические формулы движения влекомых наносов. Полученные в таких моделях результаты позволяют лишь качественно оценить процесс развития донных волн. По этой причине представляет интерес проведение анализа развития донных волн с использованием аналитической модели движения влекомых наносов.
В работе предложена двумерная профильная математическая русловая модель, позволяющая исследовать движение влекомых наносов над периодическим дном. Особенностью математической модели является возможность расчета расхода влекомых наносов по аналитической модели с реологией Кулона–Прандтля, учитывающей влияние уклонов поверхности дна, придонных нормальных и касательных напряжений на процесс движения донного материала. Показано, что при движении донного материла по дну периодической формы диффузионные и напорные расходы влекомых наносов являются разнонаправленными и доминирующими по отношению к транзитному расходу. Изучались влияния параметра перекошенности донной волны на вклад транзитного, диффузионного и напорного расходов в полный расход влекомых наносов. Выполнено сравнение полученных результатов с численными решениями других авторов для донной поверхности косинусоидальной формы.
Ключевые слова: математическое моделирование, напорный канал, донные волны, влекомые наносы, расход влекомых наносов.Просмотров за год: 9. -
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
-
О решении уравнения Экснера для дна, имеющего сложную морфологию
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461Просмотров за год: 10.Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.
В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.
Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"