Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'уравнения':
Найдено статей: 418
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  8. Корчак А.Б., Евдокимов А.В.
    Система интеграции гетерогенных моделей и ее применение к расчету слабосвязанных систем дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 127-136

    Разрабатывается программная система интеграции динамических моделей, неоднородных по своим математическим свойствам и/или по требованиям к шагу по времени. Предлагается семейство алгоритмов параллельного расчета гетерогенных моделей с разными шагами по времени. Применительно к слабосвязанным системам обыкновенных дифференциальных уравнений исследуется погрешность таких алгоритмов и их преимущество в затратах времени по сравнению с точными методами решения.

    Просмотров за год: 1.
  9. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Квазиклассические решения уравнения Гросса–Питаевского, локализованные в окрестности окружности
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 359-365

    В квазиклассическом приближении показано, что для конденсата Бозе–Эйнштейна, моделируемого уравнением Гросса–Питаевского с притягивающей нелинейностью при специальной конфигурации внешнего поля магнитной ловушки, возможны неколлапсирующие солитоноподобные волновые функции.

    Цитирований: 1 (РИНЦ).
  10. Яковенко Г.Н.
    Блуждающие симметрии уравнений Лагранжа
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 13-17

    Динамический процесс в равной степени адекватно моделируется семейством уравнений Лагранжа. Группа симметрий блуждает по этому семейству: системы переходят одна в другую. При определенных условиях по нескольким таким группам простыми вычислениями можно получить первый интеграл. Основная цель работы – показать полезность понятия блуждающей симметрии. Рассмотрен пример: плоское движение заряженной частицы в магнитном поле при наличии вязкого трения. При помощи трех блуждающих симметрий вычисляется первый интеграл.

    Просмотров за год: 4.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.