Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217Просмотров за год: 42.Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.
-
Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.
-
Субградиентные методы для слабо выпуклых и относительно слабо выпуклых задач с острым минимумом
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 393-412Работа посвящена исследованию субградиентных методов с различными вариациями шага Б.Т. Поляка на классах задач минимизации слабо выпуклых и относительно слабо выпуклых функций, обладающих соответствующим аналогом острого минимума. Оказывается, что при некоторых предположениях о начальной точке такой подход может давать возможность обосновать сходимость сyбградиентного метода со скоростью геометрической прогрессии. Для субградиентного метода с шагом Б.Т. Поляка доказана уточненная оценка скорости сходимости для задач минимизации слабо выпуклых функций с острым минимумом. Особенность этой оценки — дополнительный учет сокращения расстояния от текущей точки метода до множества решений по мере роста количества итераций. Представлены результаты численных экспериментов для задачи восстановления фазы (которая слабо выпyкла и имеет острый минимyм), демонстрирующие эффективность предложенного подхода к оценке скорости сходимости по сравнению с известным ранее результатом. Далее, предложена вариация субградиентного метода с переключениями по продуктивным и непродуктивным шагам для слабо выпуклых задач с ограничениями-неравенствами и получен некоторый аналог результата о сходимости со скоростью геометрической прогрессии. Для субградиентного метода с соответствующей вариацией шага Б.Т. Поляка на классе относительно липшицевых и относительно слабо выпуклых функций с относительным аналогом острого минимума получены условия, которые гарантируют сходимость такого субградиентного метода со скоростью геометрической прогрессии. Наконец, получен теоретический результат, описывающий влияние погрешности доступной сyбградиентномy методу информации о (сyб)градиенте и целевой функции на оценку качества выдаваемого приближенного решения. Доказано, что при достаточно малой погрешности $\delta > 0$ можно гарантировать достижение точности решения, сопоставимой c $\delta$.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"