Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 3.
- Просмотров за год: 6.
- Просмотров за год: 29.
-
Моделирование траекторий временных рядов с помощью уравнения Лиувилля
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.
Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.
Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.
-
Четырехфакторный вычислительный эксперимент для задачи случайного блуждания на двумерной решетке
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 905-918Случайный поиск в настоящее время стал распространенным и эффективным средством решения сложных задач оптимизации и адаптации. В работе рассматривается задача о средней длительности случайного поиска одним объектом другого в зависимости от различных факторов на квадратной решетке. Решение поставленной задачи было реализовано при помощи проведения полного эксперимента с 4 факторами и ортогональным планом в 54 строки. В рамках каждой строки моделировались случайные блуждания двух точек с заданными начальными условиями и правила перехода, затем замерялась продолжительность поиска одного объекта другим. В результате построена регрессионная модель, отражающая среднюю длительность случайного поиска объекта в зависимости от четырех рассматриваемых факторов, задающих начальные положения двух объектов, условия их передвижения и обнаружения. Среди рассмотренных факторов, влияющих на среднее время поиска, определены наиболее значимые. По построенной модели проведена интерпретация в задаче случайного поиска объекта. Важным результатом работы стало то, что с помощью модели выявлено качественное и количественное влияние первоначальных позиций объектов, размера решетки и правил перемещения на среднее время продолжительности поиска. Показано, что начальное соседство объектов на решетке не гарантирует быстрый поиск, если каждый из них передвигается. Помимо этого, количественно оценено, во сколько раз может затянуться или сократиться среднее время поиска объекта при увеличении скорости ищущего объекта на 1 ед., а также при увеличении размера поля на 1 ед., при различных начальных положениях двух объектов. Выявлен экспоненциальный характер роста числа шагов поиска объекта при увеличении размера решетки при остальных фиксированных факторах. Найдены условия наиболее большого увеличения средней продолжительности поиска: максимальная удаленность объектов в сочетании с неподвижностью одного из них при изменении размеров поля на 1 ед. (т. е., к примеру, с $4 \times 4$ на $5 \times 5$) может увеличить в среднем продолжительность поиска в $e^{1.69} \approx 5.42$. Поставленная в работе задача может быть актуальна с точки зрения применения как в погранометрике для обеспечения безопасности государства, так и, к примеру, в теории массового обслуживания.
Ключевые слова: математическое моделирование, случайное блуждание, планирование эксперимента, случайный поиск.Просмотров за год: 21. -
Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"