Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'система управления данными':
Найдено статей: 57
  1. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  2. Минниханов Р.Н., Аникин И.В., Дагаева М.В., Файзрахманов Э.М., Большаков Т.Е.
    Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404

    Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.

  3. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Просмотров за год: 14.
  4. Шлеймович М.П., Дагаева М.В., Катасёв А.С., Ляшева С.А., Медведев М.В.
    Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376

    В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.

    Просмотров за год: 31. Цитирований: 1 (РИНЦ).
  5. Бетелин В.Б., Галкин В.А.
    Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815

    В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.

  6. Орлова Е.В.
    Модель оперативного оптимального управления распределением финансовых ресурсов предприятия
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 343-358

    В статье проведен критический анализ существующих методов и моделей, предназначенных для решения задачи планирования распределения финансовых ресурсов в цикле оперативного управления предприятием. Выявлен ряд существенных недостатков представленных моделей, ограничивающих сферу их применения: статический характер моделей, не учитывается вероятностный характер финансовых потоков, не выявляются существенно влияющие на платежеспособность и ликвидность предприятия ежедневные суммы остатков дебиторской и кредиторской задолженности. Это обуславливает необходи- мость разработки новой модели, отражающей существенные свойства системы планирования финансо- вых потоков — стохастичность, динамичность, нестационарность. Назначением такой модели является информационная поддержка принимаемых решений при формировании плана расходования финансовых ресурсов по критериям экономической эффективности.

    Разработана модель распределения финансовых потоков, основанная на принципах оптимального динамического управления и методе динамического программирования, обеспечивающая планирование распределения финансовых ресурсов с учетом достижения достаточного уровня ликвидности и платежеспособности предприятия в условиях неопределенности исходных данных. Предложена алгоритмическая схема формирования целевого остатка денежных средств на принципах обеспечения финансовой устойчивости предприятия в условиях изменяющихся финансовых ограничений.

    Особенностью предложенной модели является представление процесса распределения денежных средств в виде дискретного динамического процесса, для которого определяется план распределения финансовых ресурсов, обеспечивающий экстремум критерия эффективности. Формирование такого плана основано на согласовании платежей (финансовых оттоков) с их поступлениями (финансовыми притоками). Такой подход позволяет синтезировать разные планы, отличающиеся разным сочетанием финансовых оттоков, а затем осуществлять поиск наилучшего по заданному критерию. В качестве критерия эффективности приняты минимальные суммарные затраты, связанные с уплатой штрафов за несвоевременное финансирование расходных статей. Ограничениями в модели являются требование обеспечения минимально допустимой величины остатков накопленных денежных средств по подпериодам планового периода, а также обязательность осуществления платежей в течение планового периода с учетом сроков погашения этих платежей. Модель позволяет с высокой степенью эффективности решать задачу планирования распределения финансовых ресурсов в условиях неопределенности сроков и объемов их поступления, согласования притоков и оттоков финансовых ресурсов. Практическая значимость модели состоит в возможности улучшить качество финансового планирования, повысить эффективность управления и операционную эффективность предприятия.

    Просмотров за год: 33.
  7. Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.

    Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.

    В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.

  8. Деев А.А., Кальщиков А.А.
    Когерентный приемопередатчик с постоянной задержкой для синхронной оптоволоконной сети
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 141-155

    В статье предлагается реализация когерентного приемопередатчика с постоянной задержкой и возможностью свободно варьируемой сетки тактовых частот, используемой для тактирования периферийных ЦАП и АЦП, задач синхронизации устройств и передачи данных. Выбор необходимой сетки тактовых частот напрямую влияет на скорость передачи данных в сети, однако позволяет гибко настроить сеть для передачи тактовых сигналов и генерации синхроимпульсов с субнаносекундной точностью на всех устройствах в сети. Предложен метод повышения точности синхронизации до десятых долей наносекунды за счет использования цифровых фазовых детекторов и системы фазовой автоподстройки частоты (ФАПЧ) на ведомом устройстве. Использование высокоскоростных волоконно-оптических линий связи (ВОЛС) для задач синхронизации шкал времени, позволяет параллельно синхронизации производить обмен командами управления и сигнальными данными. Для упрощения и удешевления устройств синхронной сети приемопередатчиков предлагается использовать тактовый сигнал, восстановленный из сериализованных данных, и прошедший фильтрацию фазовых шумов, для формирования в системе ФАПЧ тактовых сигналов периферийных устройств, таких как ЦАП и АЦП, а также сигналов гетеродина. Представлены результаты многократных тестов синхронизации в предложенной синхронной сети.

  9. Микишанина Е.А., Платонов П.С.
    Управление высокоманевренным мобильным роботом в задаче следования за объектом
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1301-1321

    Данная статья посвящена разработке алгоритма траекторного управления высокоманевренной транспортной четырехколесной роботехнической платформой, оснащенной mecanum-колесами, с целью организации ее движения за некоторым подвижным объектом. Представлен расчет кинематических соотношений данной платформы в фиксированной системе координат, необходимый для определения угловых скоростей колес робота в зависимости от заданного вектора скорости. Разработан алгоритм движения робота за мобильным объектом на плоскости без препятствий на основе использования модифицированного метода погони с использованием разных видов управляющих функций. Метод погони заключается в том, что вектор скорости геометрического центра платформы сонаправлен с вектором, соединяющим геометрический центр платформы и движущийся объект. Реализовано два вида управляющих функций: кусочная и постоянная. Под кусочной функцией имеется в виду управление с режимами переключения в зависимости от расстояния от робота до цели. Главной особенностью кусочной функции является плавное изменение скорости робота. Также управляющие функции разделяются по характеру поведения при приближении робота к цели. При применении одной из кусочных функций движение робота замедляется при достижении определенного расстояние между роботом и целью и полностью останавливается при критичном расстоянии. Другой вид поведения при приближении к цели заключается в изменении направления вектора скорости на противоположный, если расстояние между платформой и объектом будет минимально допустимым, что позволяет избегать столкновения при движении цели в направления робота. Данный вид поведения при приближении к цели реализован для кусочной и постоянной функции. Выполнено численное моделирование алгоритма управления роботом для различных управляющих функций в задаче преследования цели, где цель движется по окружности. Представлен псевдокод алгоритма управления и управляющих функций. Показаны графики траектории робота при движении за целью, изменения скорости, изменения угловых скоростей колес от времени для различных управляющих функций.

  10. Пехтерев А.А., Домащенко Д.В., Гусева И.А.
    Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978

    Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.