Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'система линейных уравнений':
Найдено статей: 74
  1. Сидоренко Д.А., Уткин П.С.
    Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766

    В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.

    Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.

  2. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

  3. Литвинов В.Н., Чистяков А.Е., Никитина А.В., Атаян А.М., Кузнецова И.Ю.
    Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672

    Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.

  4. Минкевич И.Г.
    Неполные системы линейных уравнений с ограничениями на переменные
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 719-745

    Сформулирована задача описания объектов различной природы на основе системы линейных уравнений, в которой число неизвестных превосходит число уравнений. Важной особенностью такой задачи, существенно усложняющей ее решение, являются ограничения на значения ряда переменных. Примером такой задачи является выбор биохимических реакций, осуществляющих преобразование заданного субстрата (исходного вещества) в заданный продукт. В этом случае неизвестными являются скорости биохимических реакций, образующие искомый вектор решения. Компоненты этого вектора в описываемом подходе разделяются на две группы: 1) задаваемые, $\vec{y}$; 2) зависящие от задаваемых, $\vec{x}$. Изучены варианты конфигурации области допустимых значений $\vec{y}$, следующие из ограничений, наложенных на компоненты $\vec{x}$. Выявлено, что часть ограничений могут быть излишними и поэтому исключенными из рассмотрения, что упрощает решение задачи. Анализируются случаи, когда два или более ограничений на $\vec{x}$ приводят к появлению жестких связей между компонентами $\vec{y}$. Описаны методы поиска базисных решений, учитывающие особенности данной задачи. Постановка общей задачи и полученные решения проиллюстрированы биохимическим примером.

    Просмотров за год: 24. Цитирований: 3 (РИНЦ).
  5. Голубев В.И., Хохлов Н.И.
    Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240

    Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.

    Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.

    В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.

    Просмотров за год: 11. Цитирований: 4 (РИНЦ).
  6. Янбарисов Р.М.
    Параллельный метод вложенных дискретных трещин для моделирования течений в трещиноватых пористых средах
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 735-745

    В данной работе рассматривается параллельный метод решения задач однофазной фильтрации в трещиноватой пористой среде, основанный на представлении трещин вложенными в расчетную сетку поверхностями и называемый в литературе моделью (или методом) вложенных дискретных трещин. В рамках модели пористая среда и крупные трещины представляются в виде двух независимых континуумов. Отличительной особенностью рассматриваемого подхода является то, что расчетная сетка не перестраивается под положение трещин, при этом для каждой ячейки, пересекаемой трещиной, вводится дополнительная степень свободы. Дискретизация потоков между введенными континуумами трещин и пористой среды использует преднасчитанные характеристики пересечения поверхностей трещин с трехмерной расчетной сеткой. При этом дискретизация потоков внутри пористой среды не зависит от потоков между континуумами. Это позволяет интегрировать модель в уже существующие симуляторы многофазных течений в пористых коллекторах и при этом точно описывать поведение течений вблизи трещин.

    Ранее автором был предложен монотонный метод вложенных дискретных трещин, основанный на применении метода конечных объемов с нелинейными схемами дискретизации потоков внутри пористой среды: монотонной двухточечной схемы или компактной многоточечной схемы с дискретным принципом максимума. Было доказано, что дискретное решение полученной нелинейной задачи для системы «пористая среда + трещины» сохраняет неотрицательность или удовлетворяет дискретному принципу максимума в зависимости от выбора схемы дискретизации.

    Данная работа является продолжением предыдущих исследований. Предложенный метод был параллелизован с помощью программной платформы INMOST и протестирован. Были использованы такие возможности INMOST, как сбалансированное распределение сетки по процессорам, масштабируемые методы решения разреженных распределенных систем линейных уравнений и другие. Были проведены параллельные расчеты, демонстрирующие хорошую масштабируемость при увеличении числа процессоров.

  7. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  8. Фаворская А.В., Голубев В.И.
    О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771

    В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.

    Просмотров за год: 11.
  9. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  10. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.