Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'сетевые модели':
Найдено статей: 16
  1. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  7. Памяти А. С. Холодова
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 677-678
    Просмотров за год: 16.
  8. Матюшкин И.В., Заплетина М.А.
    Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57

    Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).

    В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.

    Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.

    Просмотров за год: 58.
  9. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  10. Емалетдинова Л.Ю., Мухаметзянов З.И., Катасёва Д.В., Кабирова А.Н.
    Метод построения прогнозной нейросетевой модели временного ряда
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756

    В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.

    Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.

    Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.

    В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.