Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'риск':
Найдено статей: 33
  1. Суховольский В.Г., Ковалев А.В., Пальникова Е.Н., Тарасова О.В.
    Моделирование рисков воздействия насекомых на лесные насаждения при возможных климатических изменениях
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 241-253

    Модель динамики численности популяций лесных насекомых использована для моделирования взаимодействий «лес–насекомые» и оценки возможных повреждений лесных насаждений насекомыми-вредителями. Согласно этой модели популяция рассматривалась как система автоматической регуляции, в которой входные переменные характеризуют влияние модифицирующих (прежде всего климатических) факторов, а цепи обратной связи описывают влияние регулирующих факторов (паразитов и хищников, внутрипопуляционных взаимодействий). На основе этой модели популяционной динамики предложена методика стресс-тестирования — оценки рисков повреждений и гибели лесных насаждений по отношению к вспышкам массового размножения насекомых. Такой опасный вид лесных вредителей, как сосновая пяденица (Bupalus piniarius L.), рассматривался в качестве объекта анализа; проводились компьютерные эксперименты по оценке рисков возникновения вспышек массового размножения при возможных климатических изменениях на территории Средней Сибири. Модельные эксперименты по- казали, что при достаточно умеренном потеплении (не более 4 °С в летний период) риск воздействия насекомых на лес существенно не возрастает. Однако более сильное потепление на территории Средней Сибири в сочетании с уменьшением количества осадков в летний период может вызвать существенное увеличение частоты вспышек массового размножения основного вредителя сосновых лесов — сосновой пяденицы.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  2. Грачев В.А., Найштут Ю.С.
    Задачи устойчивости тонких упругих оболочек
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787

    В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.

    В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.

    Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.

    Просмотров за год: 23.
  3. Джинчвелашвили Г.А., Дзержинский Р.И., Денисенкова Н.Н.
    Количественные оценки сейсмического риска и энергетические концепции сейсмостойкого строительства
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 61-76

    В настоящее время сейсмостойкое проектирование зданий основано на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием упругих спектров реакций (линейно-спектральный метод), связывающих закон движения грунта с абсолютным ускорением модели в виде нелинейного осциллятора.

    Такой подход непосредственно не учитывает ни влияния длительности сильных движений, ни пластического поведения конструкции. Частотный состав и продолжительность колебаний грунта напрямую влияют на энергию, поступившую в сооружение и вызывающую повреждение его элементов. В отличие от силового или кинематического расчета сейсмическое воздействие на конструкцию можно интерпретировать, не рассматривая отдельно силы или перемещения, а представить как произведение обеих величин, т. е. работу или входную энергию (максимальную энергию, которую может приобрести сооружение в результате землетрясения).

    При энергетическом подходе сейсмического проектирования необходимо оценить входную сейсмическую энергию в сооружение и ее распределение среди различных структурных компонентов.

    В статье приводится обоснование энергетического подхода при проектировании сейсмостойких зданий и сооружений взамен применяемого в настоящее время метода, основанного на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием спектров реакции.

    Отмечено, что интерес к использованию энергетических концепций в сейсмостойком проектировании начался с работ Хаузнера, который представил сейсмические силы в виде входной сейсмической энергии, используя спектр скоростей, и предложил считать, что повреждения в упругопластической системе, как и в упругой системе, вызывает одна и та же входная сейсмическая энергия.

    В работе приведены индексы определения входной энергии землетрясения, предложенные различными авторами. Показано, что современные подходы обеспечения сейсмостойкости сооружений, основанные на представлении эффекта землетрясения как статической эквивалентной силы, недостаточно адекватно описывают поведение системы во время землетрясения.

    В статье предлагается новый подход количественных оценок сейсмического риска, позволяющий формализовать процесс принятия решений относительно антисейсмических мероприятий. На основе количественных оценок сейсмического риска анализируется разработанный в НИУ МГСУ Стандарт организации (СТО) «Сейсмостойкость сооружений. Основные расчетные положения». В разработанном документе сделан шаг вперед в отношении оптимального проектирования сейсмостойких конструкций.

    В предлагаемой концепции используются достижения современных методов расчета зданий и сооружений на сейсмические воздействия, которые гармонизированы с Еврокодом и не противоречат системе отечественных нормативных документов.

    Просмотров за год: 21.
  4. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

  5. Лубашевский И.А., Лубашевский В.И.
    Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87

    В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

    В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

  6. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  7. Кирилюк И.Л., Волынский А.И., Круглова М.С., Кузнецова А.В., Рубинштейн А.А., Сенько О.В.
    Эмпирическая проверка теории институциональных матриц методами интеллектуального анализа данных
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 923-939

    Цель настоящего исследования состояла в установлении достоверной взаимосвязи показателей внешней среды и уровня освоенности территорий с характером доминирующих в странах институциональных матриц. Среди индикаторов внешних условий представлены как исходные статистические показатели, напрямую полученные из баз данных открытого доступа, так и сложные интегральные показатели, сформированные путем применения метода главных компонент. Оценка точности распознавания стран с доминированием X- или Y-институциональных матриц по перечисленным показателям проводилась с помощью ряда методов, основанных на машинном обучении. Была выявлена высокая информативность таких показателей, как освоенность территории, амплитуда осадков, летние и зимние температуры, уровень рисков.

    Просмотров за год: 7. Цитирований: 13 (РИНЦ).
  8. Орлова Е.В.
    Оценка кредитного риска на основе методов многомерного анализа
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 893-901

    В статье предложена авторская методика многомерного анализа для формирования прогнозной оценки кредитного риска организаций, основанная на использовании информации кредитных историй, учитывающая объемы и сроки предоставляемых кредитов. Рассмотрен пример оценки кредитного риска на статистических данных кредитной организации.

    Просмотров за год: 7. Цитирований: 19 (РИНЦ).
  9. Скрипаленко М.Н., Скрипаленко М.М., Чан Ба Хюи , Ашихмин Д.А., Самусев С.В., Сидоров А.А.
    Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116

    Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  10. Шумов В.В.
    Модель обоснования направлений сосредоточения усилий пограничной охраны на уровне государства
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 187-196

    Важнейшим принципом военной науки и пограничной безопасности является принцип сосредоточения основных усилий на главных направлениях и задачах. На тактическом уровне имеется множество математических моделей для вычисления оптимального распределения ресурса по направлениям и объектам, тогда как на уровне государства соответствующие модели отсутствуют. Используя статистические данные о результатах охраны границы США, вычислен параметр пограничной производственной функции экспоненциального типа, отражающий организационно-технологические возможности пограничной охраны. Производственная функция определяет зависимость вероятности задержания нарушителей от плотности пограничников на километр границы. Финансовые показатели в производственной функции не учитываются, поскольку бюджет на содержание пограничников и оборудование границы коррелирует с количеством пограничных агентов. Определена целевая функция пограничной охраны — суммарный предотвращенный ущерб от задержанных нарушителей с учетом их ожидаемой опасности для государства и общества, подлежащий максимизации. Используя условие Слейтера, найдено решение задачи — вычислены оптимальные плотности пограничной охраны по регионам государства. Имея модель распределения ресурсов, на примере трех пограничных регионов США решена и обратная задача — оценены угрозы в регионах по известному распределению ресурсов. Ожидаемая опасность от отдельного нарушителя на американо-канадской границе в 2–5 раз выше, чем от нарушителя на американо-мексиканской границе. Результаты расчетов соответствуют взглядам специалистов по безопасности США — на американо-мексиканской границе в основном задерживаются нелегальные мигранты, тогда как потенциальные террористы предпочитают использовать другие каналы проникновения в США (включая американо-канадскую границу), где риски быть задержанными минимальны. Также результаты расчетов соответствуют сложившейся практике охраны границы: в 2013 г. численность пограничников вне пунктов пропуска на американо-мексиканской границе увеличилась в 2 раза по сравнению с 2001 г., тогда как на американо-канадской границе — в 4 раза. Практика охраны границы и взгляды специалистов дают основания для утверждения о верификации модели.

    Просмотров за год: 26.
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.