Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'риски':
Найдено статей: 33
  1. Салихова Т.Ю., Пушин Д.М., Гурия Г.Т.
    Исследование гидродинамической активации тромбоцитов в артериовенозных фистулах для гемодиализа
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 703-721

    Методами математического моделирования изучена гидродинамическая активация тромбоцитов в артериовенозных фистулах, используемых для проведения гемодиализа. Цель работы — найти те конфигурации артериовенозных фистул, риск активации в которых снижен при типичных для фистул скоростей течения. В рамках развитого подхода условием гидродинамической активации считалось превышение кумулятивным напряжением сдвига определенного порога. Величина порога зависела от степени мультимерности макромолекул фактора фон Виллебранда, играющих роль гидродинамических сенсоров у тромбоцитов. В работе было изучено влияние ряда представляющих интерес параметров артериовенозных фистул, таких как величина анастомозного угла, интенсивность кровотока, а также мультимерность макромолекул фактора фон Виллебранда, на активацию тромбоцитов. Построены параметрические диаграммы, позволяющие выделять области параметров, соответствующие наличию или отсутствию гидродинамической активации тромбоцитов. Получены скейлинговые соотношения, характеризующие критические кривые на параметрических диаграммах. Анализ влияния величины анастомозного угла на гидродинамическую активацию тромбоцитов показал, что тупые анастомозные углы должны в меньшей мере приводить к активации, чем острые. Исследование различных типов соединения артерий и вен в артериовенозных фистулах показало, что к числу наиболее безопасных относится конфигурация «конец вены в конец артерии». Для всех исследованных конфигураций артериовенозных фистул критические кривые, разделяющие области на параметрических диаграммах, являются монотонно убывающими функциями от степени мультимерности фактора фон Виллебранда. Выяснилось, что интенсивность кровотока через фистульную вену оказывает существенное влияние на вероятность запуска тромбообразования, в то время как направление течения через дистальную артерию значимо не сказывается на активации тромбоцитов. Полученные результаты позволяют определять конфигурации фистул, наиболее безопасные с точки зрения запуска тромбообразования. Авторы полагают, что результаты работы могут представлять интерес для врачей, выполняющих хирургические операции по созданию артериовенозных фистул для гемодиализа. В заключении обсуждается ряд клинических приложений результатов.

  2. Никулин В.Н., Одинцова А.С.
    Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874

    Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.

    Просмотров за год: 1.
  3. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.