Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
-
Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.
Ключевые слова: диффузия, уравнение Ланжевена, стохастические дифференциальные уравнения, корреляция, порядок сходимости.Просмотров за год: 5. Цитирований: 4 (РИНЦ). -
Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259Просмотров за год: 30.Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.
-
Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.
Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.
В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.
-
Моделирование цитокинового шторма при респираторных вирусных инфекциях
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 619-645В данной работе мы разрабатываем модель иммунного ответа на респираторные вирусные инфекции с учетом некоторых особенностей инфекции SARS-CoV-2. Модель представляет из себя систему обыкновенных дифференциальных уравнений для концентраций эпителиальных клеток, иммунных клеток, вируса и воспалительных цитокинов. Анализ существования и устойчивости стационарных точек дополняется численным моделированием с целью изучения динамики решений. Поведение решений характеризуется большим ростом концентрации вируса, наблюдаемым для острых респираторных вирусных инфекций.
На первом этапе мы изучаем врожденный иммунный ответ, основанный на защитных свойствах интерферона, производимого инфицированными вирусом клетками. С другой стороны, вирусная инфекция подавляет выработку интерферона. Их конкуренция может привести к бистабильности системы с разными режимами развития инфекции с высокой или низкой интенсивностью. В случае острого протекания заболевания и существенного роста концентрации вируса инкубационный период и максимальная вирусная нагрузка зависят от исходной вирусной нагрузки и параметров иммунного ответа. В частности, увеличение исходной вирусной нагрузки приводит к сокращению инкубационного периода и увеличению максимальной вирусной нагрузки.
Для изучения возникновения и динамики цитокинового шторма в модель вводится уравнение для концентрации провоспалительных цитокинов, производимых клетками врожденного иммунного ответа. В зависимости от параметров система может оставаться в режиме с относительно низким уровнем провосполительных цитокинов, наблюдаемым для обычного протекания вирусных инфекций, или за счет положительной обратной связи между воспалением и иммунными клетками перейти в режим цитокинового шторма, характеризующегося избыточным производством провоспалительных цитокинов. При этом цитокиновый шторм, вызванный вирусной инфекцией, может продолжаться и после ее окончания. Кроме того, гибель клеток, инициируемая провосполительными цитокинами (апоптоз), может стимулировать переход к цитокиновому шторму. Однако апоптоз в отдельности от врожденного иммунного ответа не может инициировать или поддерживать протекание цитокинового шторма. Предположения модели и полученные результаты находятся в качественном согласии с экпериментальными и клиническими данными.
-
Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.
Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.
В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.
Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.
Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.
Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.
Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.
Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.
Ключевые слова: система «паразит – хозяин», коронавирусная инфекция, эпидемический процесс, гетерогенная популяция. -
Учет психологических факторов в моделях боя (конфликта)
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 951-964Просмотров за год: 7. Цитирований: 4 (РИНЦ).Ход и исход боя в значительной степени зависят от морального духа войск, характеризуемого процентом потерь (убитых и раненых), при котором войска еще продолжают сражаться. Всякий бой есть психологический акт, заканчивающийся отказом от него одной из сторон. Обычно в моделях боя психологический фактор учитывают в решении уравнений Ланчестера (условие равенства сил, когда численность одной из сторон обращается в ноль). При этом подчеркивается, что модели ланчестеровского типа удовлетворительно описывают динамику боя только на начальных его стадиях. Для разрешения данного противоречия предложено использовать модификацию уравнений Ланчестера, учитывающую тот факт, что в любой момент боя по противнику ведут огонь не пораженные и не отказавшиеся от сражения бойцы. Полученные дифференциальные уравнения решаются численным методом и позволяют в динамике учитывать влияние психологического фактора и оценивать время завершения конфликта. Вычислительные эксперименты подтверждают известный из военной теории факт, что бой обычно заканчивается отказом бойцов одной из сторон от его продолжения (уклонение от боя в различных формах). Наряду с моделями временно́й и пространственной динамики предложено ис- пользовать модификацию функции технологии конфликта С. Скапердаса, основанную на учете принципов боя. Для оценки вероятности победы одной из сторон в бою учитываются проценты выдерживаемых сторонами кровавых потерь и показатель боевого превосходства. Последний является средним геометрическим параметров, характеризующих всестороннее обеспечение боя, разведку, маневр и огонь. Анализ хода и исхода ряда военных компаний последних десятилетий показал, что процент выдерживаемых военных потерь резко снизился в странах с низким уровнем рождаемости. Наличие технологического превосходства над противником не гарантирует военного успеха, особенно в случае продолжительного конфликта. В этой связи представляются актуальными дальнейшие исследования, позволяющие количественно учесть вклад психологического фактора в ход и исход боя, а также учитывать влияние социально-психологических воздействий.
-
Релаксационные колебания и устойчивость тонких оболочек
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.
Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.
Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.
-
Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.
-
Вычислительный алгоритм решения нелинейной краевой задачи водородопроницаемости с динамическими граничными условиями и концентрационно-зависимым коэффициентом диффузии
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1179-1193Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.
Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.
Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"