Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'равновесие Нэша':
Найдено статей: 14
  1. Набатова Д.С.
    Метод возможных направлений в задачах нелинейного программирования для биматричных игр
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 475-482

    Рассматривается задача определения ситуации равновесия по Нэшу в биматричной игре. Поиск решения связывается с задачей нелинейного программирования. Исследуются применение метода возможных направлений для решения такой задачи.

    Цитирований: 2 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  4. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

  5. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

  6. Угольницкий Г.А., Усов А.Б.
    Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684

    Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.

    Просмотров за год: 9. Цитирований: 6 (РИНЦ).
  7. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Просмотров за год: 28.
  8. Котлярова Е.В., Кривошеев К.Ю., Гасникова Е.В., Шароватова Ю.И., Шурупов А.В.
    Обоснование связи модели Бэкмана с вырождающимися функциями затрат с моделью стабильной динамики
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 335-342

    С 50-х годов XX века транспортное моделирование крупных мегаполисов стало усиленно развиваться. Появились первые модели равновесного распределения потоков по путям. Наиболее популярной (и использующейся до сих пор) моделью была модель Бэкмана и др. 1955 г. В основу этой модели положены два принципа Вардропа. На современном теоретико-игровом языке можно кратко описать суть модели как поиск равновесия Нэша в популяционной игре загрузки, в которой потери игроков (водителей) рассчитываются исходя из выбранного пути и загрузках на этом пути, при фиксированных корреспонденциях. Загрузки (затраты) на пути рассчитываются как сумма затрат на различных участках дороги (ребрах графа транспортной сети). Затраты на ребре (время проезда по ребру) определяется величиной потока автомобилей на этом ребре. Поток на ребре, в свою очередь, определяется суммой потоков по всем путям, проходящим через заданное ребро. Таким образом, затраты на проезд по пути определяются не только выбором пути, но и тем, какие пути выбрали остальные водители. Таким образом, мы находимся в стандартной теоретико-игровой постановке. Специфика формирования функций затрат позволяет сводить поиск равновесия к решению задачи оптимизации (игра потенциальная). Эта задача оптимизации будет выпуклой, если функции затрат монотонно неубывающие. Собственно, различные предположения о функциях затрат формируют различные модели. Наиболее популярной моделью является модель с функцией затрат BPR. Такие функции используются при расчетах реальных городов повсеместно. Однако в начале XXI века Ю. Е. Нестеровым и А. де Пальмой было показано, что модели типа Бэкмана имеют серьезные недостатки. Эти недостатки можно исправить, используя модель, которую авторы назвали моделью стабильной динамики. Поиск равновесия в такой модели также сводится к задаче оптимизации. Точнее, даже задаче линейного программирования. В 2013 г. А. В. Гасниковым было обнаружено, что модель стабильной ди- намики может быть получена предельным переходом, связанным с поведением функции затрат, из модели Бэкмана. Однако обоснование упомянутого предельного перехода было сделано в нескольких важных (для практики), но все- таки частных случаях. В общем случае вопрос о возможности такого предельного перехода, насколько нам известно, остается открытым. Данная работа закрывает данный зазор. В статье в общем случае приводится обоснование возможности отмеченного предельного перехода (когда функция затрат на проезд по ребру как функция потока по ребру вырождается в функцию, равную постоянным затратам до достижения пропускной способности, и равна плюс бесконечности, при превышении пропускной способности).

  9. Самойленко И.А., Кулешов И.В., Райгородский А.М.
    Модель двухуровневой межгрупповой конкуренции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 355-368

    Еще в середине позапрошлого десятилетия ученые, изучавшие функционирование сообществ насекомых, выделили 4 основных паттерна организационной структуры таких сообществ. (i) Сотрудничество более развито в группах с сильным родством. (ii) Кооперация у видов с большими размерами колоний зачастую развита больше, чем у видов с малыми размерами колоний. Причем в колониях малого размера зачастую наблюдаются больший внутренний репродуктивный конфликт и меньшая морфологическая и поведенческая специализация. (iii) В пределах одного вида численность выводка (т. е. в некотором смысле эффективность) на душу населения обычно снижается по мере увеличения размера колонии. (iv) Развитая кооперация, склонная проявляться при ограниченности ресурсов и жесткой межгрупповой конкуренции. Думая о функционировании группы организмов как о двухуровневом рынке конкуренции, в котором в процессе индивидуального отбора особи сталкиваются с проблемой распределения своей энергии между инвестициями в межгрупповую конкуренцию и инвестициями во внутригрупповую конкуренцию, т. е. внутреннюю борьбу за долю ресурсов, полученных в результате межгрупповой конкуренции, можно сопоставить подобной биологической ситуации экономический феномен coopetition — кооперацию конкурирующих агентов с целью в дальнейшем конкурентно поделить выигранный вследствие кооперации ресурс. В рамках экономических исследований были показаны эффекты, аналогичные (ii): в рамках соревнования большой и маленькой групп оптимальной стратегией большой будет полное выдавливание второй группы и монополизация рынка (т. е. большие группы склонны действовать кооперативно); (iii) существуют условия, при которых размер группы оказывает негативное влияние на продуктивность каждого ее индивида (такой эффект называется парадоксом размера группы, или эффект Рингельмана). Общей идеей моделирования подобных эффектов является идея пропорциональности: каждый индивид (особь / рациональный агент) решает, какую долю своих сил инвестировать в межгрупповую конкуренцию, а какую — во внутригрупповую. При этом выигрыш группы должен быть пропорционален ее суммарным инвестициям в конкуренцию, тогда как выигрыш индивида пропорционален его вкладу во внутривидовую борьбу. Несмотря на распространенность эмпирических наблюдений, до сих пор не была введена теоретико-игровая модель, в которой можно было бы подтвердить наблюдаемые эмпирически эффекты. В рамках данной работы предлагается модель, которая устраняет проблемы ранее существующих, а моделирование равновесных по Нэшу состояний в рамках предложенной модели позволяет пронаблюдать перечисленные выше эффекты в ходе численных экспериментов.

  10. Мальсагов М.Х., Угольницкий Г.А., Усов А.Б.
    Борьба с экономической коррупцией при распределении ресурсов
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 173-185

    В теоретико-игровой постановке рассмотрена модель борьбы с коррупцией при распределении ресурсов. Система распределения ресурсов включает в свой состав одного принципала (субъект управления верхнего уровня), одного или нескольких супервайзеров (субъектов среднего уровня) и нескольких агентов (субъекты нижнего уровня). Отношения между субъектами разных уровней строятся на основе иерархии: субъект верхнего уровня воздействует (управляет) на субъектов среднего уровня, а те, в свою очередь, на субъектов нижнего уровня. Предполагается, что коррупции подвержен средний уровень управления. Агенты предлагают супервайзеру взятки, в обмен на которые он предоставляет им дополнительные доли ресурса. Предположим также, что принципал не подвержен коррупции и является бескорыстным, не преследующим частных целей. Исследование модели проведено с точки зрения как супервайзера, так и агентов. C точки зрения агентов, возникает некооперативная игра, в которой находится равновесие Нэша. При этом задачи оптимального управления для частного вида входных функций решаются аналитически с помощью принципа максимума Понтрягина. C точки зрения супервайзера, возникает игра, которая ведется в соответствии с регламентом игры Гермейера Г2t. Указан алгоритм построения равновесия. Стратегия наказания находится аналитически. Стратегия поощрения в случае входных функций общего вида находится численно. Строится дискретный аналог непрерывной модели. Предполагается, что все субъекты управления могут изменять свои стратегии поведения в одни и те же моменты времени конечное число раз. В результате от задачи максимизации своего целевого функционала супервайзер переходит к задаче максимизации целевой функции многих переменных. Для нахождения ее наибольшего значения используется метод качественно репрезентативных сценариев. Идея этого метода состоит в том, что из множества потенциально возможных сценариев управления выбираются только сценарии, позволяющие представить качественно различные пути развития системы. В результате мощность этого множества не слишком велика и удается осуществить полный перебор качественно репрезентативных сценариев и найти стратегию поощрения агентов. После ее нахождения супервайзер предлагает агентам механизм управления с обратной связью по управлению, состоящий в наказании агентов при отклонении от выбранной супервайзером стратегии и поощрении в противном случае.

    Просмотров за год: 33. Цитирований: 1 (РИНЦ).
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.