Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'пульсирующая вязкая жидкость':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  2. Попов В.С., Попова А.А.
    Моделирование гидроупругих колебаний стенки канала, имеющей нелинейно-упругую опору
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 79-92

    В работе сформулирована математическая модель для исследования нелинейного гидроупругого отклика стенки узкого канала, заполненного пульсирующей вязкой жидкостью, опирающейся на пружину c нелинейной жесткостью. В отличие от известных подходов в рамках предложенной модели осуществлен одновременный учет инерционных и диссипативных свойств вязкой несжимаемой жидкости и нелинейности восстанавливающей силы поддерживающей пружины. Математическая модель представляет собой систему уравнений плоской задачи гидроупругости, включающей уравнения движения вязкой несжимаемой жидкости, с соответствующими краевыми условиями, и уравнение движения стенки канала как одномассовой модели с восстанавливающей силой, имеющей кубическую нелинейность. Динамика вязкой жидкости первоначально исследована в рамках гидродинамической теории смазки, т.е. без учета инерции ее движения. На следующем этапе для учета инерции движения вязкой жидкости использован метод итерации. Найдены законы распределения гидродинамических параметров вязкой жидкости в канале, что позволило определить ее реакцию, действующую на стенку канала. В результате показано, что исходная задача гидроупругости сводится к одному нелинейному уравнению, совпадающему с уравнением Дуффинга. В данном уравнении коэффициент демпфирования определяется физическими свойствами жидкости и геометрическими размерами канала, а учет инерции движения жидкости приводит к появлению дополнительной присоединенной массы, зависящей от тех же параметров. Исследование нелинейного уравнения гидроупругих колебаний проведено методом гармонического баланса для основной частоты пульсаций вязкой жидкости. В результате найден основной гидроупругий отклик стенки канала, опирающейся на пружину с мягкой или жесткой кубической нелинейностью. Численное моделирование гидроупругого отклика стенки канала показало возможность скачкообразного изменения амплитуд ее колебаний, а также дало возможность оценить влияние инерции движения жидкости на частотный диапазон, в котором наблюдаются данные изменения.

  3. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  4. Трегубов В.П.
    Математическое моделирование неньютоновского потока крови в дуге аорты
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 259-269

    Целью проведенного исследования была разработка математической модели пульсирующего течения крови по участку аорты, включающему восходящий отдел, дугу аорты с ее ответвлениями и верхнюю часть нисходящего отдела. Поскольку при прохождении пульсовой волны деформации этой наиболее твердой части аорты малы, то при построении механической модели ее стенки считались абсолютно твердыми. В статье приводится описание внутренней структуры крови и ряда внутриструктурных эффектов. Этот анализ показывает, что кровь, которая по существу является суспензией, можно рассматривать только как неньютоновскую жидкость. Кроме того, кровь можно считать жидкостью только в кровеносных сосудах, диаметр которых намного больше характерного размера клеток крови и их агрегатных образований. В качестве неньютоновской жидкости была выбрана вязкая жидкость со степенным законом связи напряжения со скоростью деформации. Этот закон позволяет описывать поведение не только жидкостей, но и суспензий. При постановке граничного условия на входе в аорту, отражающего пульсирующий характер течения крови, было решено не ограничиваться заданием совокупного потока крови, который не дает представления о пространственном распределении скорости по поперечному сечению. В связи с этим было предложено моделировать огибающую поверхность этого пространственного распределения частью параболоида вращения с фиксированным радиусом основания и высотой, которая меняется во времени от нуля до максимального значения скорости. Для граничного условия на стенке сосуда предлагается использовать условие полупроскальзывания. Это связано с тем, что клетки крови, в силу своих электрохимических свойств, не прилипают к внутреннему слою сосуда. На внешних концах аорты и ее ответвлений задавалась величина давления. Для выполнения вычислений была построена геометрическая модель рассматриваемой части аорты с ответвлениями, на которую была нанесена тетраэдальная сетка с общим числом элементов 9810. Вычисления производились методом конечных элементов с шагом по времени 0.01 с с использованием пакета ABAQUS. В результате было получено распределение скоростей и давления на каждом шаге по времени. В областях ветвления сосудов было обнаружено вре́менное наличие вихрей и обратных течений. Они зарождались через 0.47 с от начала пульсового цикла и исчезали спустя 0.14 с.

    Просмотров за год: 13.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.