Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'пространства неопределенных коэффициентов':
Найдено статей: 8
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
  2. Лобанов А.И.
    Научные и педагогические школы Александра Сергеевича Холодова
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579

    В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.

    За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.

    На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).

    В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.

    Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.

    Просмотров за год: 42.
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  6. Полосин В.Г.
    Квантильные меры формы для распределений с тяжелыми хвостами
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077

    Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.

  7. Лобанов А.И.
    Разностные схемы для уравнения переноса, удовлетворяющие обобщенному условию аппроксимации
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 181-193

    Cтроится семейство явных разностных схем на пятиточечном шаблоне для численного решения линейного уравнения переноса. Анализ свойств разностных схем проводится в пространстве неопределенных коэффициентов. Такие пространства впервые были введены в рассмотрение А. С. Холодовым. Для исследования свойств разностных схем ставилась задача линейного программирования. В качестве целевой функции обычно рассматривался коэффициент при главном члене невязки. Для построения монотонных разностных схем ставилась задача оптимизации с ограничениями типа неравенств. Ограниченность такого подхода становится ясной с учетом того, что аппроксимация разностной схемы определяется лишь на классических (гладких) решениях дифференциальной задачи.

    В соответствие разностной схеме ставится некоторый функционал, определяющий свойства разностной схемы. Функционал должен быть линейным по коэффициентам схемы. Возможно, что функционал зависит от сеточной функции — решения разностной задачи или проекции на сетку решения дифференциальной задачи. Если первые члены разложения в ряд Тейлора этого функционала по сеточным параметрам совпадут с условиями классической аппроксимации, такой функционал будем называть обобщенным условием аппроксимации. В статье показано, что такие функционалы существуют. Для линейного уравнения с постоянными коэффициентами построение такого функционала возможно и для обобщенного (негладкого) решения дифференциальной задачи.

    Построение разностной схемы с заданными свойствами тогда опирается на решение задачи поиска минимума функционала.

    Построены семейства функционалов как для гладких решений исходной дифференциальной задачи, так и для обобщенных решений. Построены новые разностные схемы, основанные на анализе функционалов методами линейного программирования. При этом использован аппарат исследования пары самодвойственных задач линейного программирования. Найдена оптимальная монотонная разностная схема, обладающая первым порядком аппроксимации на гладком решении. Обсуждается возможность применения построенных новых схем для построения гибридных разностных схем повышенного порядка аппроксимации на гладких решениях.

    Приводится пример численной реализации простейшей разностной схемы с обобщенной аппроксимацией.

    Просмотров за год: 27.
  8. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.