Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'преобразование симметрии':
Найдено статей: 7
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 831-832
    Просмотров за год: 2.
  3. Яковенко Г.Н.
    Симметрии уравнения Гамильтона–Якоби
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 253-265

    Вводится понятие преобразования симметрии уравнения Гамильтона–Якоби. Для группы симметрий показывается, как должны быть связаны с функцией Гамильтона коэффициенты инфинитезимального оператора группы. Приводятся примеры вычисления симметрий и примеры вычисления на основе симметрии полных интегралов.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  4. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Просмотров за год: 5.
  5. Яковенко Г.Н.
    Орбиты в задаче двух тел с симметрийной точки зрения
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 39-45

    Для задачи двух тел вычисляется 12-параметрическая группа симметрий, преобразования которой переводят очевидное решение — равномерные движения тел по круговым орбитам с общим неподвижным центром — в движения с произвольными начальными данными.

  6. Яковенко Г.Н.
    Управляемые системы в форме Бруновского: симметрии, управляемость
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 147-159

    Многие нелинейные системы с управлением неособенным преобразованием переменных {состояние-управление} приводятся к каноническому виду Бруновского. В каноническом виде решаются различные вопросы теории управления, затем обратной заменой переменных осуществляется возврат к исходным переменным. В работе на основе этой идеологии изучаются преобразования симметрии пространства {время-состояние-управление}.

    Просмотров за год: 2.
  7. Ашрятов А.А., Прытков С.В., Сыромясов А.О.
    Метод расчета пространственного светораспределения системы разноориентированных светодиодных излучателей
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 577-584

    В статье предложен метод расчета светораспределения системы разноориентированных светодиодных излучателей, основанный на совмещении систем координат, связанных с этими источниками света. В отличие от других известных подходов, указанный метод может быть применен к излучателям, светораспределение которых обладает произвольной симметрией или вовсе не имеет ее.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.