Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'потоки':
Найдено статей: 193
  1. В работе приводятся результаты применения схемы очень высокой точности и разрешающей способности для получения численных решений уравнений Навье – Стокса сжимаемого газа, описывающих возникновение и развитие неустойчивости двумерного ламинарного пограничного слоя на плоской пластине. Особенностью проведенных исследований является отсутствие обычно используемых искусственных возбудителей неустойчивости при реализации прямого численного моделирования. Используемая мультиоператорная схема позволила наблюдать тонкие эффекты рождения неустойчивых мод и сложный характер их развития, вызванные предположительно ее малыми погрешностями аппроксимации. Приводится краткое описание конструкции схемы и ее основных свойств. Описываются постановка задачи и способ получения начальных данных, позволяющий достаточно быстро наблюдать установившийся нестационарный режим. Приводится методика, позволяющая обнаруживать колебания скорости с амплитудами, на много порядков меньшими ее средних значений. Представлена зависящая от времени картина возникновения пакетов волн Толмина – Шлихтинга с меняющейся интенсивностью в окрестности передней кромки пластины и их распространения вниз по потоку. Представленные амплитудные спектры с расширяющимися пиковыми значениями в нижних по течению областях указывают на возбуждение новых неустойчивых мод, отличных от возникающих в окрестности передней кромки. Анализ эволюции волн неустойчивости во времени и пространстве показал согласие с основными выводами линейной теории. Полученные численные решения, по-видимому, впервые описывают полный сценарий возможного развития неустойчивости Толмина – Шлихтинга, которая часто играет существенную роль на начальной стадии ламинарно-турбулентного перехода. Они открывают возможности полномасштабного численного моделирования этого крайне важного для практики процесса при аналогичном изучении пространственного пограничного слоя.

  2. Рид Р., Кокс М.А., Ригли Т., Мелладо Б.
    Характеристика тестирования центрального процессора на базе процессоров ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586

    Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.

    Просмотров за год: 1.
  3. Лотарев Д.Т.
    Размещение точек Штейнера в дереве Штейнера на плоскости средствами MatLab
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 707-713

    Рассматривается способ локализации точек Штейнера средствами MatLab в задаче Штейнера с потоком на евклидовой плоскости, когда соединяемые точки лежат в вершинах четырех-, пяти- или шестиугольника. Матрица смежности считается заданной. Метод использует способ решения трехточечной задачи Штейнера, в которой дерево Штейнера связывает три точки. Представлена визуализация най- денных решений.

    Просмотров за год: 4.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.