Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'последовательность':
Найдено статей: 105
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  6. Чуйко С.М., Старкова О.В.
    Модифицированная двухшаговая итерационная техника для построения функций Матье
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 31-43

    Предложена модифицированная двухшаговая итерационная техника, построенная по схеме метода наименьших квадратов, определяющая последовательные приближения к периодическим решениям уравнения Матье и его собственным функциям, значительно превосходящие по точности ранее известные результаты.

    Просмотров за год: 1.
  7. Скалько Ю.И., Карасёв Р.Н., Акопян А.В., Цыбулин И.В., Мендель М.А.
    Маршевый алгоритм решения задачи переноса излучения методом коротких характеристик
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 203-215

    В работе изложена процедура построения численных решений для задачи переноса излучения. В этом подходе численное решение строится последовательно от границы области вдоль направления распространения излучения. Проведено тестирование алгоритма задаче распространения излучения нагретого шара.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  8. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  9. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Линейное программирование
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 143-165

    Мультипликативные методы для разреженных матриц являются наиболее приспособленными для снижения трудоемкости операций решения систем линейных уравнений, выполняемых на каждой итерации симплекс-метода. Матрицы ограничений в этих задачах слабо заполнены ненулевыми элементами, что позволяет получать мультипликаторы, главные столбцы которых также разрежены, а операция умножения вектора на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора. Кроме того, при переходе к смежному базису мультипликативное представление достаточно легко корректируется. Для повышения эффективности таких методов требуется уменьшение заполненности мультипликативного представления ненулевыми элементами. Однако на каждой итерации алгоритма к последовательности мультипликаторов добавляется еще один. А трудоемкость умножения, которая линейно зависит от длины последовательности, растет. Поэтому требуется выполнять время от времени перевычисление обратной матрицы, получая ее из единичной. Однако в целом проблема не решается. Кроме того, набор мультипликаторов представляет собой последовательность структур, причем размер этой последовательности неудобно велик и точно неизвестен. Мультипликативные методы не учитывают фактора высокой степени разреженности исходных матриц и ограничения-равенства, требуют определения первоначального базисного допустимого решения задачи и, как следствие, не допускают сокращения размерности задачи линейного программирования и регулярной процедуры сжатия — уменьшения размерности мультипликаторов и исключения ненулевых элементов из всех главных столбцов мультипликаторов, полученных на предыдущих итерациях. Таким образом, разработка численных методов решения задач линейного программирования, позволяющих преодолеть или существенно ослабить недостатки схем реализации симплекс-метода, относится к актуальным проблемам вычислительной математики.

    В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения задач линейного программирования, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в уменьшении размерности и минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.

    В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации предлагается положить модификацию прямого мультипликативного метода линейного программирования путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.

    Просмотров за год: 10. Цитирований: 2 (РИНЦ).
  10. Ровенская О.Г.
    Приближение аналитических функций повторными суммами Валле Пуссена
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 367-377

    Работа посвящена вопросам приближения периодических функций высокой гладкости средними арифметическими суммами Фурье. Наиболее естественным и простым примером линейного процесса аппроксимации непрерывных периодических функций действительной переменной является приближение элементами последовательностей частичных сумм ряда Фурье. Известно, что последовательности частичных сумм ряда Фурье не являются равномерно сходящимися на всем пространстве C 2$\pi$-периодических непрерывных функций. Значительное число работ данного направления посвящено изучению аппроксимативных свойств методов приближения, которые для заданной функции $f$ образуются с помощью преобразований частичных сумм ее ряда Фурье и позволяют построить последовательности тригонометрических полиномов, которые равномерно сходятся для каждой функции $f \in C$. На протяжении последних десятилетий широко изучаются суммы Валле Пуссена и их частные случаи суммы Фейера. Одним из наиболее важных направлений в этой области является изучение асимптотического поведения верхних граней уклонений средних арифметических сумм Фурье по различным классам периодических функций. Методы исследования интегральных представлений уклонений тригонометрических полиномов, которые порождаются линейными методами суммирования рядов Фурье, возникли и получили свое развитие в работах С.М. Никольского, С.Б. Стечкина, Н.П. Корнейчука, В.К. Дзядыка и их учеников.

    Целью работы является систематизация известных результатов, касающихся приближения классов периодических функций высокой гладкости средними арифметическими суммами Фурье, и представление новых фактов, полученных для их частных случаев. Изучены аппроксимативные свойства тригонометрических полиномов, порождаемых повторным применением метода суммирования Валле Пуссена, на классах периодических функций, которые можно регулярно продолжить в фиксированную полосу комплексной плоскости. Получены асимптотические формулы для верхних граней уклонений в равномерной метрике $r$-повторных сумм Валле Пуссена на классах аналитических периодических функций. Указаны условия, при которых повторные суммы Валле Пуссена обеспечивают лучший порядок приближения, чем обычные.

    Просмотров за год: 45.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.