Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
От локальной би- и квадростабильности к пространственно-временной неоднородности: обзор математических моделей и содержательные следствия
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 75-109Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.
Ключевые слова: популяция, динамика, возрастная структура, миграция, генетическая дивергенция, бистабильность, бифуркации. -
Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305Просмотров за год: 2. Цитирований: 3 (РИНЦ).В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.
-
Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850Просмотров за год: 32.В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).
Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.
-
Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151Просмотров за год: 40. Цитирований: 2 (РИНЦ).Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.
-
Гибридные модели в биомедицинских приложениях
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309Просмотров за год: 25.В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.
-
О моделировании преодоления водной преграды Rangifer tarandus L
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.
Ключевые слова: дикий северный олень, миграции, математическое моделирование, динамическая система, управление. -
Мультистабильность для системы трех конкурирующих видов
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.
-
Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.
Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.
В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.
Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.
Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.
Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.
Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.
Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.
Ключевые слова: система «паразит – хозяин», коронавирусная инфекция, эпидемический процесс, гетерогенная популяция. -
Исследование индивидуально-ориентированных механизмов динамики одновидовой популяции с помощью логических детерминированных клеточных автоматов
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1279-1293Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.
Ключевые слова: популяционная динамика, клеточные автоматы, сложные системы, популяционные катастрофы, автоволны.Просмотров за год: 16. Цитирований: 3 (РИНЦ). -
Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"