Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 1.
- Просмотров за год: 20.
-
Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203Просмотров за год: 4. Цитирований: 2 (РИНЦ).В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.
-
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
-
Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть II
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1205-1219Просмотров за год: 3.Целью данной работы является обобщение макроскопических гидродинамических моделей второго порядка, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным измерениям уравнения состояния — зависимости давления от плотности транспортного потока, получаемого эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов. Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства любой феноменологической модели. Проверка работоспособности предложенного подхода проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, предоставляемых системой PeMS (http://pems.dot.ca.gov/), таких как моделирование движения трафика на заданном участке транспортной сети автострады I-580 в Калифорнии.
-
Особенности маршрутизации общественного транспорта в городах разных видов
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 381-394В статье представлена классификация городов с учетом планировочных особенностей и возможных транспортных решений для городов различных типов. Также обсуждаются примеры различных стратегий развития городского общественного транспорта в России и странах Европейского союза с сопоставлением их эффективности. В статье приводятся примеры влияния городского планирования на мобильность граждан. Для реализации сложных стратегических решений необходимо использовать микро- и макромодели, которые позволяют сравнивать ситуации «как есть» и «как будет» для прогнозирования последствий. Кроме того, авторы предлагают методику совершенствования маршрутной сети общественного транспорта и улично-дорожной сети, которая включает определение потребностей населения в трудовых и учебных корреспонденциях, идентификацию узких мест улично-дорожной сети, разработку имитационных моделей и выработку рекомендаций по результатам эксперимента на моделях, а также расчет эффективности, включающий расчет положительного социального эффекта, экономическую эффективность, повышение экологичности и устойчивости городской транспортной системы. Для обоснования предложенной методологии были построены макро- и микромодели исследуемого города с учетом пространственной планировки и других особенностей города. Таким образом, на примере города Набережные Челны показано, что использование нашей методологии может помочь улучшить ситуацию на дорогах за счет оптимизации сети автобусных маршрутов и дорожной инфраструктуры. Результаты показали, что при реализации предложенных решений можно уменьшить транспортную нагрузку на узкие места, количество перекрывающихся автобусных маршрутов, а также плотность движения.
Ключевые слова: устойчивый транспорт, эффективность транспортной системы, маршрутная сеть, общественный транспорт. -
Математическая модель биометрической системы распознавания по радужной оболочке глаза
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"