Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Профили вызванной суперспирализацией дестабилизации дуплекса ДНК (SIDD) для промоторов бактериофага T7
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 867-878Просмотров за год: 18.Для функционирования регуляторных областей ДНК решающее значение имеет не нуклеотидная последовательность (генетический текст), а их физико-химические и структурные свойства. Именно они обеспечивают кодирование ДНК-белковых взаимодействий, лежащих в основе различных процессов регуляции. Среди таких свойств SIDD (Stress-Induced Duplex Destabilization) — характеристика, описывающая склонность участка дуплекса ДНК к плавлению при заданном уровне суперспирализации. Ранее для данного параметра дуплекса показана роль в функционировании областей регуляции различного типа. В данной работе модель SIDD использована для получения профилей вероятности плавления последовательностей промоторов бактериофага T7. Данный геном характеризуется малым размером (примерно 40 тыс. пар нуклеотидов) и временной организацией экспрессии генов: на первом этапе инфекции ранняя область Т7-ДНК транскрибируется РНК-полимеразой бактерии-хозяина, на более поздних этапах жизненного цикла фагоспецифичная РНК-полимераза последовательно производит транскрипцию областей генов II класса и III класса. При этом механизмы дифференциального узнавания промоторов разных групп ферментом-полимеразой не могут быть основаны исключительно на их нуклеотидной последовательности, в частности в связи с тем, что она очень близка для большинства таких промоторов. В то же время полученные профили SIDD данных промоторов сильно различаются и могут быть разделены на характерные группы, соответствующие функциональным классам промоторов Т7-ДНК. Так, все промоторы ранней области находятся в области влияния одного максимально дестабилизированного участка дуплекса ДНК, соответствующего различным областям конкретных промоторов. Промоторы класса II лишены значительно дестабилизированных областей вблизи точки старта транскрипции. Напротив, промоторы III класса имеют характерные пики профилей вероятности плавления, в каждом случае локализованные в ближней downstream-области. Таким образом, установлены значительные различия профилей для промоторных областей при очень близкой нуклеотидной последовательности (промоторы II и III классов отличаются единичными заменами нуклеотидов), что подтверждает высокую чувствительность рассматриваемого свойства дуплекса к первичной структуре, а также необходимость рассмотрения широкого генетического контекста. Описанные различия профилей вероятности плавления на основе модели SIDD наряду с другими физическими свойствами могут определять дифференциальное узнавание промоторов разных классов РНК-полимеразами.
-
К вопросу выбора структуры многофакторной регрессионной модели на примере анализа факторов выгорания творческих работников
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 265-274В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.
Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.
На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"