Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'операционное исчисление':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  2. Варшавский Л.Е.
    Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963

    В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.

    Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.

    В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.

    Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.

  3. Варшавский Л.Е.
    Математические методы стабилизации структуры социальных систем при действии внешних возмущений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857

    В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.

    Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.

    В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.

    Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).

  4. Варшавский L.Е.
    Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233

    В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.

    В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.

    На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.

    В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.