Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.
Ключевые слова: сжиженный природный газ, СПГ, оптимизация производства СПГ, смесевой хладагент, СХА, нейронные сети, искусственный интеллект. -
Динамическая теория информации как базис естественно-конструктивистского подхода к моделированию мышления
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 433-447Рассматриваются основные положения и выводы динамической теории информации (ДТИ). Показано, что ДТИ дает возможность выявить два существенно важных типа информации: объективную (безусловную) и субъективную (условную). Выделяется два способа получения информации: рецепция (восприятие уже существующей информации) и генерация информации (производство новой). Показано, что процессы генерации и рецепции информации должны происходить в двух разных подсистемах одной когнитивной системы. Обсуждаются основные положения естественно-конструктивистского подхода к моделированию мышления. Показано, что любой нейроморфный подход сталкивается с проблемой «провала в описании «Мозга» и «Разума»», т. е. провала между объективно измеримой информации об ансамбле нейронов («Мозг») и субъективной информацией о сознании человека («Разум»). Обсуждается естественно-конструктивистская когнитивная архитектура, разработанная в рамках данного подхода. Она представляет собой сложную блочно-иерархическую комбинацию, собранную из разных нейропро-цессоров. Основная конструктивная особенность этой архитектуры состоит в том, что вся система разделена на две подсистемы (по аналогии с полушариями головного мозга). Одна из подсистем отвечает за восприятие новой информации, обучение и творчество, т. е. за генерацию информации. Другая подсистема отвечает за обработку уже существующей информации, т. е. рецепцию информации. Показано, что низший (нулевой) уровень иерархии представлен процессорами, которые должны записывать образы реальных объектов (распределенная память) как отклик на сенсорные сигналы, что представляет собой объективную информацию (и относится к «Мозгу»). Остальные уровни иерархии представлены процессорами, содержащими символы записанных образов. Показано, что символы представляют собой субъективную (условную) информацию, создаваемую самой системой и обеспечивающую ее индивидуальность. Совокупность высоких уровней иерархии, содержащих символы абстрактных понятий, дает возможность интерпретировать понятия «сознание», «подсознание», «интуиция», относящиеся к области «Разума», в терминах ансамбля нейронов. Таким образом, ДТИ дает возможность построить модель, позволяющую проследить, как на основе «Мозга» возникает «Разум».
Ключевые слова: информация, когнитивный процесс, образ, символ, нейропроцессор, шум, принцип почернения связей, вербализация, борьба условных информаций.Просмотров за год: 6. -
Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.
В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.
Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.
Ключевые слова: управление движением, генетические алгоритмы, нейронные сети, движение в жидкости, идеальная жидкость.Просмотров за год: 12. Цитирований: 1 (РИНЦ). -
Модель формирования первичных поведенческих паттернов с адаптивным поведением на основе использования комбинации случайного поиска и опыта
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 941-950Просмотров за год: 6. Цитирований: 2 (РИНЦ).В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.
Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).
-
Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468Просмотров за год: 11.Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.
-
Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.
Ключевые слова: транспортное моделирование, фотовидеофиксация, прогнозирование транспортного потока. -
Исследование клеточной динамики с помощью интерференционной микроскопии с применением вейвлет-анализа
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 77-83Методом лазерной интерференционной микроскопии исследовали внутриклеточную динамику эритроцитов, нейронов и тучных клеток. Показано, что существуют регулярные изменения оптических свойств клеток, отражающие кооперативные процессы в примембранной и центральной областях клеток. Показано, что характерные частоты изменений показателя преломления могут служить маркерами специфических клеточных процессов.
Ключевые слова: лазерная интерференционная микроскопия, вейвлет-анализ.Просмотров за год: 1. Цитирований: 5 (РИНЦ). -
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
-
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Просмотров за год: 36.Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
-
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492Просмотров за год: 12.В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"