Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Метод моделирования структуры компактной костной ткани
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 413-420Просмотров за год: 2. Цитирований: 7 (РИНЦ).Представлен метод моделирования микроструктуры компактной костной ткани. Модельный образец рассматривается как совокупность структурных элементов, содержащих армирующий элемент – остеон и матрицу. Форма структурных элементов определяется расстояниями до соседних остеонов и направлениями расположения соседних остеонов. Проведен расчет напряженно-деформированного состояния модельного образца при растяжении в программном комплексе ANSYS. Результаты расчета показали, что гаверсовы каналы являются концентраторами напряжений.
-
Приближенная модель плоских статических задач нелинейной упругости
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 889-896Просмотров за год: 4. Цитирований: 2 (РИНЦ).Работа посвящена построению приближенной математической модели нелинейной теории упругости для плоской деформации. В качестве метода, реализующего символьные вычисления, применяется метод эффектов третьего порядка. Предложенная модель позволяет использовать методы линейной теории упругости для решения конкретных задач. Данный метод является пригодным для автоматического получения аналитических решений плоских задач нелинейной теории упругости о концентрации напряжений около отверстий на базе математического пакета Maple. На примере треугольного контура исследован нелинейный эффект зависимости коэффициента концентрации напряжений от уровня внешней нагрузки.
-
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
-
Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940Просмотров за год: 10. Цитирований: 3 (РИНЦ).В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.
-
Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.
В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.
Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.
Ключевые слова: композиционный материал, нелинейная упругость, чистый изгиб, колебания, гомогенизация.Просмотров за год: 14. -
О решении уравнения Экснера для дна, имеющего сложную морфологию
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461Просмотров за год: 10.Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.
В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.
Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.
-
Исследование процесса роста амплитуды донных волн в реках и каналах
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1339-1347Работа является теоретическим исследованием процесса развития донной неустойчивости в реках и каналах. На основе аналитической модели расхода влекомых наносов, учитывающей влияние уклонов донной поверхности, придонного давления и касательного напряжения на движение донного материала и аналитического решения, позволяющего определять придонные касательные и нормальные напряжения, возникающие при обтекании турбулентным потоком периодических длинных донных волн малой крутизны, сформулирована и решена задача определения скорости роста амплитуды для растущих донных волн. Полученное решение задачи позволяет определить характерное время роста донной волны, скорость роста донной волны и ее максимальную амплитуду в зависимости от физических и гранулометрических характеристик донного материала и гидравлических параметров водного потока. На примере развития периодической синусоидальной донной волны малой крутизны выполнена верификация решения, полученного для сформулированной задачи. Полученное аналитическое решение задачи позволяет определить скорость роста амплитуды донной волны от текущего значения ее амплитуды. Сравнение полученного решения с экспериментальными данными показало их хорошее качественное и количественное согласование.
Ключевые слова: донные волны, амплитуда донных волн, устойчивость донной поверхности, расход влекомых наносов. -
Моделирование отклика поликристаллических сегнетоэлектриков на электрические и механические поля большой интенсивности
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 93-113Представлена математическая модель, описывающая необратимые процессы поляризации и деформирования поликристаллических сегнетоэлектриков во внешних электрических и механических полях большой интенсивности, вследствие чего изменяется внутренняя структура и меняются свойства материала. Необратимые явления моделируются в трехмерной постановке для случая одновременного воздействия электрического поля и механических напряжений. Объектом исследования является представительный объем, в котором исследуются остаточные явления в виде возникающих индуцированных и необратимых частей вектора поляризации и тензора деформации. Основной задачей моделирования является построение определяющих соотношений, связывающих между собой вектор поляризации и тензор деформации, с одной стороны, и вектор электрического поля и тензор механических напряжений, с другой стороны. Рассмотрен общий случай, когда направление электрического поля может не совпадать ни с одним из главных направлений тензора механических напряжений. Для обратимых составляющих определяющие соотношения построены в виде линейных тензорных уравнений, в которых упругие и диэлектрические модули зависят от остаточной деформации, а пьезоэлектрические модули - от остаточной поляризации. Определяющие соотношения для необратимых частей строятся в несколько этапов. Вначале построена вспомогательная модель идеального или безгистерезисного случая, когда все векторы спонтанной поляризации могут поворачиваться в поле внешних сил без взаимного влияния друг на друга. Предложен способ подсчета результирующих значений предельно возможных значений поляризации и деформации идеального случая в виде поверхностных интегралов по единичной сфере с плотностью распределения, полученной из статистического закона Больцмана. Далее сделаны оценки энергетических затрат, необходимых для слома механизмов закрепления доменов, и подсчитана работа внешних полей в реальном и идеальном случаях. На основании этого выведен энергетический баланс и получены определяющие соотношения для необратимых составляющих в виде уравнений в дифференциалах. Разработана схема численного решения этих уравнений для определения текущих значений необратимых искомых характеристик в заданных электрических и механических полях. Для циклических нагрузок построены диэлектрические, деформационные и пьезоэлектрические гистерезисные кривые.
Разработанная модель может быть имплантирована в конечно-элементный комплекс для расчета неоднородных остаточных полей поляризации и деформирования с последующим определением физических модулей неоднородно поляризованной керамики как локально анизотропного тела.
-
Молекулярно-динамическое исследование механических свойств кристалла платины, армированного углеродной нанотрубкой при одноосном растяжении
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1069-1080В этой статье рассматриваются механические свойства платины, армированной углеродной нанотрубкой (УНТ), в условиях одноосной растягивающей нагрузки посредством метода молекулярной динамики. Обзор текущих расчетных и экспериментальных исследований подчеркивает преимущества композитов, армированных углеродными нанотрубками с структурной точки зрения. Однако количественные и качественные исследования влияния углеродной нанотрубки на улучшения свойств композитов все еще редки. Выбор композита обусловлен перспективой применения платиновых сплавов во многих сферах, где они могут подвергаться механическим воздействиям, в том числе и в биосовместимых системах. Армирование платины (Pt) с помощью УНТ может обеспечить дополнительные возможности для вживления имплантатов и при этом достичь требуемых механических характеристик.
Структура композита состояла из кристалла Pt с гранецентрированной кубической решеткой с постоянной 3,92 Å и углеродной нанотрубки. Матрица кристалла платины имеет форму куба с размерами $43,1541 Å \times 43,1541 Å \times 43,1541 Å$. Размер отверстия в середине платиновой матрицы определяется радиусом углеродной нанотрубки типа «зигзаг» (8,0), который составляет 2,6 Å. Углеродная нанотрубка помещается в отверстие радиусом 4,2 Å. При таких параметрах взаимной конфигурации наблюдался минимум энергии взаимодействия. Рассматриваемая модель содержит 320 атомов углерода и 5181 атом платины. Объемная доля углерода в композите Pt-C составляет 5,8%. На первом этапе исследования производились анализ влияния скорости деформации на соотношение «напряжение–деформация» и изменение энергии в процессе одноосного растяжения композита Pt-C.
Анализ влияния скорости деформации показал, что предел текучести при растяжении увеличивается с увеличением скоростей деформации, а модуль упругости имеет, скорее, тенденцию к уменьшению при увеличении скорости деформации. Данная работа также демонстрирует, что по сравнению с чистой платиной модуль Юнга увеличился на 40% для Pt-C, а эластичность композита меньше на 42,3%. В целом подробно рассмотрены механизмы разрушения, включая пластическую деформацию в атомистическом масштабе.
Ключевые слова: метод молекулярной динамики, механические свойства, углеродная нанотрубка, армирование, композит. -
Конечно-элементный статический анализ механического состояния костного регенерата на различных этапах консолидации в модельной системе остеосинтеза аппаратом Илизарова
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 427-440Просмотров за год: 3.Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.
С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"