Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'модели':
Найдено статей: 699
  1. Варшавский Л.Е.
    Математические методы стабилизации структуры социальных систем при действии внешних возмущений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857

    В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.

    Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.

    В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.

    Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).

  2. Аронов И.З., Максимова О.В.
    Моделирование достижения консенсуса в условиях доминирования в социальной группе
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1067-1078

    Во многих социальных группах, например в технических комитетах по стандартизации, на между- народном, региональном и национальных уровнях, в европейских общинах, управляющих экопоселени- ями, социальных общественных движениях (occupy), международных организациях, принятие решений опирается на консенсус членов группы. Вместо голосования, когда большинство получает победу над меньшинством, консенсус позволяет найти решение, которое каждый член группы поддерживает или как минимум считает приемлемым. Такой подход гарантирует, что будут учтены все мнения членов группы, их идеи и потребности. При этом отмечается, что достижение консенсуса требует значительного време- ни, поскольку необходимо обеспечить согласие внутри группы независимо от ее размера. Было показано, что в некоторых ситуациях число итераций (согласований, переговоров) весьма значительно. Более того, в процессе принятия решений всегда присутствует риск блокировки решения меньшинством в группе, что не просто затягивает время принятия решения, а делает его невозможным. Как правило, таким мень- шинством выступает один или два одиозных человека в группе. При этом в дискуссии такой член группы старается доминировать, оставаясь всегда при своем мнении, игнорируя позицию других коллег. Это при- водит к затягиванию процесса принятия решений, с одной стороны, и ухудшению качества консенсуса — с другой, поскольку приходится учитывать только мнение доминирующего члена группы. Для выхода из кризиса в этой ситуации было предложено принимать решение по принципу «консенсус минус один» или «консенсус минус два», то есть не учитывать мнение одного или двух одиозных членов группы.

    В статье на основе моделирования консенсуса с использованием модели регулярных марковских цепей исследуется вопрос, насколько сокращается время принятия решения по правилу «консенсус минус один», когда не учитывается позиция доминирующего члена группы.

    Общий вывод, который вытекает из результатов моделирования, сводится к тому, что эмпирическое правило принятия решений по принципу «консенсус минус один» имеет соответствующее математиче- ское обоснование. Результаты моделирования показали, что применение правила «консенсус минус один» позволяет сократить время достижения консенсуса в группе на 76–95 %, что важно для практики.

    Среднее число согласований гиперболически зависит от средней авторитарности членов группы (без учета авторитарного), что означает возможность затягивания процесса согласования при высоких значениях авторитарности членов группы.

  3. Краснов Ф.В., Смазневич И.С., Баскакова Е.Н.
    Метод контрастного семплирования для предсказания библиографических ссылок
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336

    В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.

    Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.

    Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.

  4. Никитин И.С., Никитин А.Д.
    Мультирежимная модель и численный алгоритм расчета квазитрещин различного типа при циклическом нагружении
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 873-885

    На основе мультирежимной двухкритериальной модели усталостного разрушения предложен метод расчета зарождения и развития узкихлок ализованных зон поврежденности в образцах и элементах конструкций для различных режимов циклического нагружения. Такие узкие зоны повреждаемости можно рассматривать как квазитрещины двухтипов, соответствующих механизму нормального отрыва и сдвига. Проведена верификация модели путем численных экспериментов по воспроизведению левыхи правыхв етвей усталостных кривых для образцов из титановыхи алюминиевых сплавов, построенных по испытаниям при различных условиях и схемах циклического нагружения. Приведены примеры моделирования развития квазитрещин двухтипов (нормального отрыва и сдвига) при различных режимах циклического нагружения пластины с отверстием в качестве концентратора напряжений. При сложном напряженном состоянии в предлагаемой комплексной модели возможна естественная реализация любого из рассмотренных механизмов развития квазитрещин. Квазитрещины разных типов могут развиваться в разных частях образца, в том числе одновременно.

  5. Игнатьев Н.А., Тулиев У.Ю.
    Семантическая структуризация текстовых документов на основе паттернов сущностей естественного языка
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1185-1197

    Рассматривается технология создания паттернов из слов (понятий) естественного языка по текстовым данным в модели «мешок слов». Паттерны применяются для снижения размерности исходного пространства в описании документов и поиска семантически связанных слов по темам. Процесс снижения размерности реализуется через формирование по паттернам латентных признаков. Исследуется многообразие структур отношений документов для разбиения их на темы в латентном пространстве.

    Считается, что заданное множество документов (объектов) разделено на два непересекающихся класса, для анализа которых необходимо использовать общий словарь. Принадлежность слов к общему словарю изначально неизвестна. Объекты классов рассматриваются в ситуации оппозиции друг к другу. Количественные параметры оппозиционности определяются через значения устойчивости каждого признака и обобщенные оценки объектов по непересекающимся наборам признаков.

    Для вычисления устойчивости используются разбиения значений признаков на непересекающиеся интервалы, оптимальные границы которых определяются по специальному критерию. Максимум устойчивости достигается при условии, что в границах каждого интервала содержатся значения одного из двух классов.

    Состав признаков в наборах (паттернах из слов) формируется из упорядоченной по значениям устойчивости последовательности. Процесс формирования паттернов и латентных признаков на их основе реализуется по правилам иерархической агломеративной группировки.

    Набор латентных признаков используется для кластерного анализа документов по метрическим алгоритмам группировки. В процессе анализа применяется коэффициент контентной аутентичности на основе данных о принадлежности документов к классам. Коэффициент является численной характеристикой доминирования представителей классов в группах.

    Для разбиения документов на темы предложено использовать объединение групп по отношению их центров. В качестве закономерностей по каждой теме рассматривается упорядоченная по частоте встречаемости последовательность слов из общего словаря.

    Приводятся результаты вычислительного эксперимента на коллекциях авторефератов научных диссертаций. Сформированы последовательности слов из общего словаря по четырем темам.

  6. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Горбачёв Р.А.
    Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195

    Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.

  7. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  8. Скворцова Д.А., Чувильгин Е.Л., Смирнов А.В., Романов Н.О.
    Разработка гибридной имитационной модели сборочного цеха
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1359-1379

    В представленной работе разработана гибридная имитационная модель сборочного цеха в среде AnyLogic, которая позволяет подбирать оптимальные параметры производственной системы. Для построения гибридной модели использовались подходы, объединяющие дискретно-событийное моделирование и агентное в единую модель с интегрирующим взаимодействием. В рамках данной работы описан механизм функционирования сложной производственной системы, состоящей из нескольких участников-агентов. Каждому агенту соответствует класс, в котором задается определенный набор параметров агента. В имитационной модели были учтены три основные группы операции, выполняющиеся последовательно, определена логика работы с забракованными комплектами. Процесс сборки изделия представляет собой процесс, протекающий в многофазной разомкнутой системе массового обслуживания с ожиданием. Также есть признаки замкнутой системы — потоки брака для повторной обработки. При создании распределительной системы в сегменте окончательного контроля используются законы выполнения заявок в очереди типа FIFO. Для функциональной оценки производственной системы в имитационной модели включены несколько функциональных переменных, описывающих количество готовых изделий, среднее время подготовки изделий, количество и доля брака, результат моделирования для проведения исследований, а также функциональные переменные, в которых будут отображаться расчетные коэффициенты использования. Были проведены серии экспериментов по моделированию с целью изучения влияния поведения агентов системы на общие показатели эффективности производственной системы. В ходе эксперимента было установлено, что на показатель среднего времени подготовки изделия основное влияние оказывают такие параметры, как средняя скорость подачи комплекта заготовки, среднее время выполнения операций. На заданном промежутке ограничений удалось подобрать оптимальный набор параметров, при котором удалось достичь наиболее эффективной работы сборочной линии. Данный эксперимент подтверждает основной принцип агентного моделирования: децентрализованные агенты вносят личный вклад и оказывают влияние на работу всей моделируемой системы в целом. Вре зультате проведенных экспериментов, благодаря подбору оптимального набора параметров, удалось улучшить основные показатели функционирования сборочного цеха, а именно: увеличить показатель производительности на 60%; снизить показатель средней продолжительности сборки изделия на 38%.

  9. Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.

  10. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.