Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Выбор граничных условий при моделировании процессов турбулентного переноса в приземном слое атмосферы
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 27-46Рассмотрены одномерная и двумерная гидродинамические модели турбулентного переноса внутри приземного слоя атмосферы в условиях нейтральной атмосферной стратификации. Обе модели основаны на решении системы усредненных уравнений Навье – Стокса и неразрывности с использованием 1.5-го порядка замыкания, а также уравнений для турбулентной кинетической энергии и скорости ее диссипации. С помощью одномерной модели, применимой в случае однородной подстилающей поверхности, проведено исследование по оценке влияния граничных условий на верхней и нижней границах модельной области на результаты расчетов вертикальных профилей скорости ветра и параметров турбулентности. В предложенной модели граничные условия ставились таким образом, чтобы она была согласована с широко используемой классической одномерной моделью, основанной на логарифмическом распределении скорости ветра по высоте, линейной зависимости коэффициента турбулентного обмена от высоты и постоянстве турбулентной кинетической энергии в приземном слое атмосферы в условиях нейтральной атмосферной стратификации. На основе классической модели можно получить ряд соотношений, связывающих градиент скорости ветра, турбулентную кинетическую энергию и скорость ее диссипации, каждое из которых может быть использовано в качестве граничного условия в гидродинамической модели. Из нескольких возможных вариантов постановки граничных условий для скорости ветра и скорости диссипации турбулентной кинетической энергии выбраны те, при которых достигается наименьшее отклонение смоделированных с помощью гидродинамической модели вертикальных профилей искомых величин от классических распределений. Соответствующие граничные условия на верхней и нижней границах использованы при постановке начально-краевой задачи в двумерной гидродинамической модели, позволяющей учитывать сложную структуру рельефа и горизонтальную неоднородность растительности. На основе предложенной двумерной модели с выбранными оптимальными граничными условиями исследована динамика установления турбулентного потока в зависимости от расстояния при обтекании воздушным потоком опушки леса. Для всех рассмотренных начально-краевых задач разработаны и реализованы безусловно устойчивые неявные разностные схемы их численного решения.
Ключевые слова: приземный слой атмосферы, турбулентный перенос, гидродинамическая модель, граничные условия.Просмотров за год: 19. -
Моделирование полета и разрушения болида Бенешов
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.
Ключевые слова: болид, моделирование, движение, фрагментация, тепловой поток, прочность, процессы взаимодействия.Просмотров за год: 24. Цитирований: 1 (РИНЦ). -
Анализ численного метода решения задачи о распространении пламени по вертикальной поверхности горючего материала
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 755-774Просмотров за год: 33.Снижение пожарной опасности при использовании полимерных материалов является одной из актуальных научно-технических задач. В связи со сложностью проведения экспериментальных исследований в данной области важным направлением современной фундаментальной науки является развитие теоретических основ описания реагирующих течений. Для решения вопросов, связанных с распространением пламени по поверхности горючего материала, необходимо совершенствовать методы математического моделирования, что обусловлено большим количеством протекающих физико-химических процессов, требующих моделирования каждого из них в отдельности, и сложным характером взаимодействия между этими процессами как в газовой среде, так и в твердом теле.
Распространение пламени вверх по вертикальной поверхности твердого горючего материала сопровождается нестационарными вихревыми структурами течения газа вблизи области горения, образование которых происходит в результате тепловой нестабильности и за счет действия сил естественной конвекции, ускоряющей горячие продукты сгорания. За счет вихревых структур от горячего газофазного пламени в твердый материал в каждый момент времени поступает разное количество тепловой энергии. Поэтому адекватный расчет теплового потока и, соответственно, вихревого течения имеет важное значение для оценки скорости распространения пламени.
Данная работа появящена оценкам параметров численного метода решения задачи распространения пламени по поверхности горючего материала, учитывающего сопряженный характер взаимодействия газовой среды и твердого тела и вихревое течение, вызванное естественной конвекцией. В работе рассмотрены особенности использования различных аппроксимационных схем, используемых при интегрировании исходных дифференциальных уравнений по пространству и во времени, релаксации полей при итерировании внутри шага по времени, различных шагов интегрирования по времени.
Сформулированная в работе математическая модель позволяет описывать процесс распространения пламени по поверхности горючего материала. Газодинамика моделируется системой уравнений Навье – Стокса, вихревое течение описывается комбинированной моделью турбулентности RANS–LES (DDES), турбулентное горение — комбинированной моделью горения Eddy Break-Up с учетом кинетических эффектов, теплопередача излучением — методом сферических гармоник первого порядка аппроксимации (P1). Решение уравнений производится в программном пакете OpenFOAM.
-
Исследование состояний равновесия второго рода уравнения Курамото–Сивашинского с однородными условиями Неймана
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 59-69Просмотров за год: 27.Рассматривается известное эволюционное уравнение математической физики, которое в современной математической литературе принято называть уравнением Курамото–Сивашинского. В данной работе это уравнение изучается в первоначальной редакции авторов работ, где оно было предложено, вместе с однородными краевыми условиями Неймана. Изучен вопрос о существовании и устойчивости локальных аттракторов, сформированных пространственно-неоднородными решениями изучаемой краевой задачи. Данный вопрос стал особенно актуален в последнее время в связи с моделированием процесса формирования наноструктур на поверхности полупроводников под воздействием потока ионов или лазерного излучения.
Изучен вопрос о существовании и устойчивости состояний равновесия второго рода двумя различными способами. В первом из них использован метод Галёркина. Второй подход основан на использовании строго обоснованных методов теории динамических систем с бесконечномерным фазовым пространством: метод интегральных многообразий, теория нормальных форм, асимптотические методы.
В работе в целом повторен подход из известной работы Д. Армбрустера, Д. Гукенхеймера, Ф.Холмса, где использован подход, основанный на применении метода Галёркина. Результаты такого анализа расширены и развиты. Использование возможностей современных компьютеров помогло существенно дополнить анализ этой задачи. В частности, найти все решения в четырех- и пятичленных аппроксимациях Галёркина, которые для изучаемой краевой задачи следует интерпретировать как состояния равновесия второго рода. Также дан анализ их устойчивости в смысле определения А. М. Ляпунова.
В данной работе проведено сравнение результатов, полученных с использованием метода Галёркина с результатами бифуркационного анализа краевой задачи на базе применения методов качественного анализа бесконечномерных динамических систем. Сравнение двух вариантов результатов показало некоторую ограниченность возможностей использования метода Галёркина.
-
Проблемно-моделирующая среда численного решения уравнения Больцмана на кластерной архитектуре для анализа газокинетических процессов в межэлектродном зазоре термоэмиссионных преобразователей
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 219-232Просмотров за год: 24.Данная работа посвящена применению метода численного решения уравнения Больцмана для решения задачи моделирования поведения радионуклидов в полости межэлектродного зазора многоэлементного электрогенерирующего канала. Анализ газокинетических процессов термоэмиссионных преобразователей может быть использован для ресурсного обоснования конструкции электрогенерирующего канала. В работе рассматриваются две конструктивные схемы канала: с одно- и двусторонним выводом газообразных продуктов деления в вакуумно-цезиевую систему. Анализ проводился с использованием двумерного уравнения переноса второго порядка точности для решения левой части и проекционного метода для решения правой части — интеграла столкновений. В ходе работы был реализован программный комплекс, позволяющий производить расчет на кластерной архитектуре за счет использования алгоритма распараллеливания левой части уравнения, результаты анализа зависимости эффективности вычисления от числа параллельных узлов представлены в работе. С использованием программного комплекса были проведены расчеты и получены данные по распределениям давлений газообразных продуктов деления в полости зазора, рассмотрены различные варианты начальных давлений и потоков, обнаружена зависимость давления радионуклидов в области коллектора от давлений цезия на концах зазора. Полученные результаты качественно подтверждаются испытаниями в петлевом канале ядерного реактора.
-
Целенаправленная трансформация математических моделей на основе стратегической рефлексии
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 815-831Исследование сложных процессов в различных сферах человеческой деятельности традиционно основывается на использовании математических моделей. В современных условиях разработка и применение подобных моделей существенно упрощаются наличием быстродействующих средств вычислительной техники и специализированных инструментальных средств, позволяющих, по существу, конструировать модели из заранее подготовленных модулей. Несмотря на это, известные проблемы, связанные с обеспечением адекватности модели, достоверности исходных данных, реализацией на практике результатов моделирования, чрезмерно большой размерностью исходных данных, совместным применением достаточно разнородных математических моделей в условиях усложнения и интеграции моделируемых процессов, приобретают растущую актуальность. Еще более критичными могут являться внешние ограничения, накладываемые на значение оптимизируемого функционала и нередко не достижимые в рамках построенной модели. Логично предположить, что для выполнения этих ограничений необходима целенаправленная трансформация исходной модели, то есть переход к математической модели с заведомо «улучшенным» решением. Новая модель, очевидно, будет иметь иную внутреннюю структуру (совокупность параметров и их взаимосвязи), а также иные форматы (области определения) исходных данных. Исследованные авторами возможности целенаправленного изменения первоначальной модели основаны на реализации идеи стратегической рефлексии.
В математическом плане практическая реализация авторского замысла оказывается наиболее сложной при использовании имитационных моделей, для которых алгоритмы поиска оптимальных решений имеют известные ограничения, а исследование на чувствительность в большинстве случаев весьма затруднительно. На примере рассмотрения достаточно стандартной дискретно-событийной имитационной модели в статье приводятся типовые методические приемы, позволяющие осуществить ранжирование вариабельных параметров по чувствительности и в дальнейшем расширить область определения вариабельного параметра, к которому имитационная модель наиболее чувствительна. При переходе к «улучшенной» модели возможно также одновременное исключение из нее параметров, влияние которых на оптимизируемый функционал несущественно, и, наоборот, введение в модель новых параметров, соответствующих реальным процессам.
-
Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.
-
Методика формирования многопрограммного управления изолированным перекрестком
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 295-303Наиболее простым и востребованным практикой методом управления светофорной сигнализацией является предрассчитанное регулирование, когда параметры работы светофорного объекта рассчитываются заранее и затем активируются согласно расписанию. В работе предложена методика формирования сигнального плана, позволяющая рассчитать программы регулирования и установить период их активности. Подготовка исходных данных для проведения расчета включает формирование временного ряда суточной интенсивности движения с интервалом 15 минут. При проведении полевых обследований возможно отсутствие части измерений интенсивности движения. Для восполнения недостающих значений предложено использование кубической сплайн-интерполяции временного ряда. Следующем шагом методики является расчет суточного набора сигнальных планов. В работе приведены зависимости, позволяющие рассчитать оптимальную длительность цикла регулирования и разрешающих движение фаз и установить период их активности. Существующие системы управления движением имеют ограничения на количество используемых программ регулирования. Для сокращения количества сигнальных планов и определения периода их активности используется кластеризация методом $k$-средних в пространстве длительности транспортных фаз. В новом суточном сигнальном плане длительность фаз определяется координатами полученных центров кластеров, а периоды активности устанавливаются элементами, вошедшими в кластер. Апробация на числовом примере показала, что при количестве кластеров 10 отклонение оптимальной длительности фаз от центров кластеров не превышает 2 с. Для проведения оценки эффективности разработанной методики на примере реального пересечения со светофорным регулированием. На основе натурных обследований схемы движения и транспортного спроса разработана микроскопическая модель для программы SUMO (Simulation of Urban Mobility). Оценка эффективности произведена на основе потерь транспорта, оцениваемых затратами времени на передвижение. Имитационное моделирование многопрограммного управления сигналами светофора показало снижение времени задержки (в сравнении с однопрограммным управлением) на 20 %. Предложенная методика позволяет автоматизировать процесс расчета суточных сигнальных планов и установки времени их активности.
Ключевые слова: светофорное регулирование, многопрограммное управление, временной ряд, кластеризация, $k$-средние. -
Моделирование LES-подходом в ПК FlowVision турбулентного перемешивания разнотемпературных потоков в T-образном трубопроводе
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 827-843В работе представлены результаты численного моделирования в программном комплексе FlowVision турбулентного перемешивания потоков воды разнойтемпер атуры в Т-образной трубе. В статье детально описан экспериментальный стенд, специально спроектированный с целью получения простых для большинства программных комплексов вычислительной гидродинамики граничных условий. По результатам испытаний получены значения осредненных во времени температур и скоростей в контрольных датчиках и плоскостях. В статье представлена используемая при расчете система дифференциальных уравнений в частных производных, описывающая процесс тепломассопереноса в жидкости с использованием модели турбулентности Смагоринского. Указаны граничные условия, посредством которых задаются случайные пульсации скорости на входе в расчетную область. Моделирование выполнено на различных расчетных сетках, для которых оси глобальной системы координат совпадают с направлениями потоков горячей и холодной воды. Для ПК FlowVision показана возможность построения расчетной сетки в процессе моделирования на основании изменения параметров течения. Оценено влияние подобного алгоритма построения расчетной сетки на результаты расчетов. Приведены результаты расчетов на диагональной сетке с использованием скошенной схемы (направление координатных линий не совпадает с направлением осей труб тройника). Показана высокая эффективность скошенной схемы при моделировании потоков, генеральные направления которых не совпадают с гранями расчетных ячеек. Проведено сравнение результатов моделирования на различных расчетных сетках. По результатам численного моделирования в ПК FlowVision получены распределения осредненных по времени скорости и температуры воды в контрольных сечениях и датчиках. Представлено сравнение численных результатов, полученных в ПК FlowVision, с экспериментальными данными и расчетами, выполненными с использованием других вычислительных программ. Результаты моделирования турбулентного перемешивания потока воды разной температуры в ПК FlowVision ближе к экспериментальным данным в сравнении с расчетами в CFX ANSYS. Показано, что применение LES-модели турбулентности на сравнительно небольших расчетных сетках в ПК FlowVision позволяет получать результаты с погрешностью в пределах 5 %.
Ключевые слова: FlowVision, численное моделирование, гидродинамика, турбулентное перемешивание потоков, теплоперенос, Т-образная труба. -
Компьютерная модель экстракционного реактора идеального смешения в формате метода компонентных цепей с неоднородными векторными связями
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 599-614Рассмотрены особенности метода компонентных цепей (МКЦ) при моделировании химико-технологических систем (ХТС) с учетом его практической значимости. Программно-алгоритмической реализацией МКЦ в настоящее время является комплекс программ компьютерного моделирования МАРС (моделирование и автоматический расчет систем). МАРС позволяет осуществлять разработку и анализ компьютерных моделей ХТС с заданными параметрами эксперимента. В ходе настоящей работы осуществлена разработка модели реактора идеального смешения с учетом физико-химических особенностей процесса экстракции урана в присутствии азотной кислоты и трибутилфосфата в среде моделирования МАРС. В качестве результатов представлены кинетические кривые концентрации урана, извлекаемого в органическую фазу. Исследована и подтверждена возможность использования МКЦ для описания и анализа сложных химико-технологических систем ядерно-топливного цикла, в том числе для экстракционных процессов. Использование полученных результатов планируется применять при разработке виртуальной лаборатории, которая будет включать основные аппараты химической промышленности, а также сложные технические управляемые системы (СТУС) на их основе и позволит приобрести широкий спектр профессиональных компетенций по работе с «цифровыми двойниками» реальных объектов управления, в том числе получить первоначальный опыт работы с основными аппаратами ядерной отрасли. Помимо непосредственной прикладной пользы, также предполагается, что успешная реализация отечественного комплекса программ компьютерного моделирования и технологий на основе полученных результатов позволит найти решения к проблемам организации национального технологического суверенитета и импортозамещения.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"