Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'механический аналог ДНК':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  3. Якушевич Л.В.
    Биомеханика ДНК: вращательные колебания оснований
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 319-328

    В данной работе изучаются вращательные колебания азотистых оснований, образующих центральную пару в коротком фрагменте ДНК, состоящем из трех пар оснований. Построен простой механический аналог фрагмента, в котором основания имитируются маятниками, а взаимодействия между основаниями — пружинками. Получен лагранжиан модельной системы и уравнения движения. Получены решения уравнений движения для однородного случая, когда рассматриваемый фрагмент ДНК состоит из одинаковых пар оснований: из пар аденин-тимин (AT) или гуанинцитозин (GC). Построены траектории модельной системы в конфигурационном пространстве.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  4. Якушевич Л.В.
    Электронный аналог однородной ДНК
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798

    Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.

    Просмотров за год: 9.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.