Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Применение технологий численного моделирования при проектировании систем отделения самовыходом
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 597-606В статье изложены основные положения методики расчета отделения полезной нагрузки (объектов различного назначения с собственным движительным комплексом) от подводного носителя методом самовыхода с использованием современных методов численной гидродинамики (CFD-технологий). Приводится описание метода отделения самовыходом, его достоинства и недостатки. Приводятся результаты исследования сходимости по сетке конечно-объемной модели по критерию «точность–время», а также результаты сопоставления расчета с экспериментом (валидации модели). Валидация модели проводилась по имеющимся данным экспериментального определения тяговых характеристик водометного движительного комплекса натурного образца в опытовом бассейне. Расчеты тяговых характеристик водометного движительного комплекса проводились с применением программного комплекса FlowVision версии 3.10. На основании сопоставления результатов расчетов для условий проведения экспериментов была определена погрешность расчетной модели водометного движительного комплекса, которая составила не более 5 % в диапазоне поступей работы водометного движительного комплекса, реализуемых в процессе отделения методом самовыхода. Полученное значение погрешности расчета тяговых характеристик используется для определения предельных расчетных значений скорости отделения объекта от носителя (минимальные и максимальные значения). Рассмотренная задача является значимой с научной точки зрения благодаря особенностям подхода к моделированию водометного движительного комплекса совместно с движением отделяемого объекта, а также с практической точки зрения благодаря возможности получения с высокой степенью достоверности параметров отделения объектов от подводных аппаратов методом самовыхода, условия работы которых предполагают движение в замкнутых объемах, уже на стадии проектирования.
-
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
-
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
-
Стохастическое моделирование химических реакций в субдиффузионной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.
Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.
Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.
-
Моделирование начальной стадии истечения двухкомпонентной разреженной газовой смеси через тонкую щель в вакуум
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 747-759В работе рассматривается процесс формирования течения при истечении двухкомпонентной газовой смеси через тонкую щель в вакуум. Предлагается подход к моделированию течений разреженных газовых смесей в переходном режиме на основе прямого решения кинетического уравнения Больцмана, в котором для вычисления интегралов столкновения используется консервативный проекционно-интерполяционный метод. Приводятся расчетные формулы, детально описана методика вычислений применительно к течению бинарной газовой смеси. В качестве потенциала взаимодействия молекул используется потенциал Леннарда–Джонса. Разработана программно-моделирующая среда, позволяющая проводить исследование течений газовых смесей в переходном режиме на системах кластерной архитектуры. За счет использования технологий распараллеливания кода получено ускорение счета в 50–100 раз. Проведено численное моделирование нестационарного двумерного истечения бинарной аргон-неоновой газовой смеси в вакуум через тонкую щель для различных значений числа Кнудсена. Получены графики зависимости выходного потока компонентов газовой смеси от времени в процессе установления течения. Обнаружены нестационарные области сильного разделения компонентов газовой смеси, в которых отношение концентраций достигает 10 и более. Обнаруженный эффект может иметь приложения в задаче разделения газовых смесей.
-
Исследование нелинейных процессов на границе раздела газового потока имет аллической стенки микроканала
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 781-794Работа посвящена исследованию влияния нелинейных процессов в пограничном слое на общий характер течений газа в микроканалах технических систем. Подобное исследование актуально для задач нанотехнологий. Одной из важных задач в этой сфере является анализ потоков газа в микроканалах в случае переходных и сверхзвуковых течений. Результаты этого анализа важны для техники газодинамического напыления и для синтеза новых наноматериалов. Из-за сложности реализации полномасштабных экспериментов на микро- и наномасштабах они чаще всего заменяются компьютерным моделированием. Эффективность компьютерного моделирования достигается как за счет использования новых многомасштабных моделей, так и за счет сочетания сеточных методов и методов частиц. В данной работе мы используем метод молекулярной динамики. Он был применен для исследования установления газового микротечения в металлическом канале. В качестве газовой среды был выбран азот. Металлические стенки микроканалов состояли из атомов никеля. В численных экспериментах были рассчитаны коэффициенты аккомодации на границе между течением газа и металлической стенкой. Исследование микросистемы в пограничном слое позволило сформировать многокомпонентную макроскопическую модель граничных условий. Эта модель была интегрирована в макроскопическое описание течения на основе системы квазигазодинамических уравнений. На основе такой преобразованной газодинамической модели были проведены расчеты микротечения в реальной микросистеме. Результаты были сопоставлены с классическим расчетом течения, не учитывающим нелинейные процессы в пограничном слое. Сравнение показало необходимость использования разработанной модели граничных условий и ее интеграции с классическим газодинамическим подходом.
-
Молекулярно-динамическая оценка механических свойств фибриллярного актина
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168◦) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.
Ключевые слова: F-актин, MgADP, математическое моделирование, молекулярная динамика, изгибная, продольная и торсионная жесткость. -
Моделирование центробежных насосов с использованием программного комплекса FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 907-919В работе представлена методика моделирования центробежных насосов с использованием программного комплекса (ПК) FlowVision на примере магистрального нефтяного центробежного насоса НМ 1250-260. В качестве рабочего тела как при стендовых испытаниях, так и при численном моделировании используется вода. Расчет проводится в полной трехмерной постановке. Для учета утечек через уплотнения моделирование проводится вместе с корпусом насоса. С целью уменьшения требуемых вычислительных ресурсов в работе предлагается не моделировать течение в уплотнениях напрямую, а задавать утечки с помощью расхода. Влияние шероховатости поверхностей насоса учитывается в модели пристеночных функций. Модель пристеночных функций использует эквивалентную песочную шероховатость, и в работе применяется формула пересчета реальной шероховатости в эквивалентную песочную. Вращение рабочего колеса моделируется с помощью метода скользящих сеток: данный подход полностью учитывает нестационарное взаимодействие между ротором и диффузором насоса, что позволяет с высокой точностью разрешить рециркуляционные вихри, возникающие на режимах с низкой подачей.
Разработанная методика позволила добиться высокой согласованности результатов моделирования с экспериментом на всех режимах работы насоса. Отклонение на номинальном режиме по КПД составляет 0,42%, по напору — 1,9%. Отклонение расчетных характеристик от экспериментальных растет по мере увеличения подачи и достигает максимума на крайней правой точке характеристики (до 4,8% по напору). При этом среднее арифметическое относительное отклонение между численным моделированием и экспериментом для КПД насоса по шести точкам составляет 0,39% при погрешности измерения КПД в эксперименте 0,72%, что удовлетворяет требованиям к точности расчетов. В дальнейшем данная методика может быть использована для проведения серии оптимизационных и прочностных расчетов, так как моделирование не требует существенных вычислительных ресурсов и учитывает нестационарный характер течения в насосе.
Ключевые слова: FlowVision, компьютерное моделирование, гидродинамика, насосы, шероховатость, характеристики. -
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель. -
Модель установившегося течения реки в поперечном сечении изогнутого русла
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.
Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.
Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"