Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'метод декартовых сеток':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  2. Брагин М.Д., Рогов Б.В.
    Бикомпактные схемы для задач газовой динамики: обобщение на сложные расчетные области методом свободной границы
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 487-504

    Работа посвящена использованию бикомпактных схем для численного решения эволюционных уравнений гиперболического типа. Основным преимуществом схем этого класса является сочетание двух положительных свойств: пространственной аппроксимации высокого четного порядка на шаблоне, всегда занимающем одну ячейку сетки, и спектрального разрешения, лучшего по сравнению с классическими компактными конечно-разностными схемами того же порядка пространственной аппроксимации. Рассматривается одна особенность бикомпактных схем — жесткая привязка их пространственной аппроксимации к декартовым сеткам (с ячейками-параллелепипедами в трехмерном случае). Она делает затруднительным применение бикомпактных схем к решению задач в сложных расчетных областях в рамках подхода неструктурированных сеток. Предлагается решать эту проблему путем применения известных методов аппроксимации границ сложной формы и соответствующих им краевых условий на декартовых сетках. Обобщение бикомпактных схем на задачи в геометрически сложных областях проводится на примере задач газовой динамики и уравнений Эйлера. В качестве конкретного метода, позволяющего учесть на декартовых сетках влияние твердых границ произвольной формы на течение газа, выбирается метод свободной границы. Приводится краткое описание этого метода, выписываются его уравнения. Для них строятся бикомпактные схемы четвертого порядка аппроксимации по пространству с локально-одномерным расщеплением. Компенсационный поток метода свободной границы дискретизируется со вторым порядком точности. Для интегрирования по времени в получаемых схемах применяются неявный метод Эйлера и $L$-устойчивый жестко-точный трехстадийный однократно диагонально-неявный метод Рунге–Кутты третьего порядка точности. Разработанные бикомпактные схемы тестируются на трех двумерных задачах: о стационарном сверхзвуковом обтекании с числом Маха, равным трем, одного круглого цилиндра и группы изт рех круглых цилиндров, а также о нестационарном взаимодействии плоской ударной волны и круглого цилиндра в канале с плоскопараллельными стенками. Полученные результаты хорошо согласуются с результатами других работ: твердые тела физически корректно влияют на поток газа, давление в контрольных точках на поверхностях тел рассчитывается с точностью, в целом отвечающей выбранному разрешению сетки и уровню численной диссипации.

  3. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

  4. Сидоренко Д.А., Уткин П.С.
    Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766

    В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.

    Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.

  5. Иванов А.М., Хохлов Н.И.
    Параллельная реализация сеточно-характеристического метода в случае явного выделения контактных границ
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 667-678

    В работе рассматривается применение технологии Message Passing Interface (MPI) для распараллеливания программного алгоритма, основанного на сеточно-характеристическом методе, применительно к численному решению уравнения линейной теории упругости. Данный алгоритм позволяет численно моделировать распространение динамических волновых возмущений в твердых деформируемых телах. К такого рода задачам относится решение прямой задачи распространения сейсмических волн, что представляет интерес в сейсмике и геофизике. Во снове решателя лежит сеточно-характеристический метод. В работе предложен способ уменьшения времени взаимодействия между процессами MPI в течение расчета. Это необходимо для того, чтобы можно было производить моделирование в сложных постановках, при этом сохраняя высокую эффективность параллелизма даже при большом количестве процессов. Решение проблемы эффективного взаимодействия представляет большой интерес, когда в расчете используется несколько расчетных сеток с произвольной геометрией контактов между ними. Сложность данной задачи возрастает, если допускается независимое распределение узлов расчетных сеток между процессами. В работе сформулирован обобщенный подход для обработки контактных условий в терминах переинтерполяции узлов из заданного участка одной сетки в определенную область второй сетки. Предложен эффективный способ распараллеливания и установления эффективных межпроцессорных коммуникаций. Приведены результаты работы реализованного программного кода: получены волновые поля и сейсмограммы как для 2D-, так и для 3D-постановок. Показано, что данный алгоритм может быть реализован в том числе на криволинейных расчетных сетках. Рассмотренные постановки демонстрируют возможность проведения расчета с учетом топографии среды и криволинейных контактов между слоями. Это позволяет получать более точные результаты, чем при расчете только с использованием декартовых сеток. Полученная эффективность распараллеливания — практически 100% вплоть до 4096 процессов (за основу отсчета взята версия, запущенная на 128 процессах). Дале наблюдается ожидаемое постепенное снижение эффективности. Скорость спада не велика, на 16384 процессах удается сохранить 80%-ную эффективность.

    Просмотров за год: 18.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.