Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753Просмотров за год: 9. Цитирований: 1 (РИНЦ).В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
-
Релаксационная модель вязкого теплопроводного газа
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.
-
Использование программного комплекса Turbulence Problem Solver (TPS) для численного моделирования взаимодействия лазерного излучения с металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 619-630Работа посвящена использованию программного пакета Turbulence Problem Solver (TPS) для численного моделирования широкого спектра лазерных задач. Возможности пакета продемонстрированы на примере численного моделирования взаимодействия фемтосекундных лазерных импульсов с металлическими пленками. Разработанный авторами программный пакет TPS предназначен для численного решения гиперболических систем дифференциальных уравнений на многопроцессорных вычислительных системах с распределенной памятью. Пакет представляет собой современный и расширяемый программный продукт. Архитектура пакета дает исследователю возможность моделировать различные физические процессы единообразно, с помощью различных численных методик и программных блоков, содержащих специфические для каждой задачи начальные условия, граничные условия и источниковые компоненты. Пакет предоставляет пользователю возможность самостоятельно расширять функциональность пакета, добавляя новые классы задач, вычислительных методов, начальных и граничных условий, а также уравнений состояния вещества. Реализованные в программном пакете численные методики тестировались на тестовых задачах в одномерной, двумерной и трехмерной геометрии, в состав которых вошли задачи Римана о распаде произвольного разрыва с различными конфигурациями точного решения.
Тонкие пленки на подложках — важный класс мишеней для наномодификации поверхностей в плазмонике или сенсорных приложениях. Этой тематике посвящено множество статей. Большинство из них, однако, концентрируются на динамике самой пленки, уделяя мало внимания подложке и рассматри- вая ее просто как объект, поглощающий первую волну сжатия и не влияющий на возникающие вследствие облучения поверхностные структуры. В работе подробно описан вычислительный эксперимент по численному моделированию взаимодействия единичного ультракороткого лазерного импульса с золотой пленкой, напыленной на толстую стеклянную подложку. Использовалась равномерная прямоугольная сетка и численный метод Годунова первого порядка точности. Представленные результаты расчетов позволили подтвердить теорию об ударно-волновом механизме образования отверстий в металле при фемтосекундной лазерной абляции для случая тонкой золотой пленки толщиной около 50 нм на толстой стеклянной подложке.
Ключевые слова: пакет прикладных программ, уравнения газовой динамики, фемтосекундные лазеры, уравнения состояния.Просмотров за год: 15. -
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
-
Численное моделирование обратного влияния полимерной примеси на колмогоровское течение
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1093-1105Предложен численный метод, аппроксимирующий уравнения динамики слабосжимаемого вязкого течения при наличии полимерной составляющей потока. Исследуется поведение течения под воздействием статической внешней периодической силы в периодической квадратной ячейке. Методика основывается на гибридном подходе. Гидродинамика течения описывается системой уравнений Навье – Стокса и численно аппроксимируется линеаризованным методом Годунова. Полимерное поле описывается системой уравнений для вектора растяжений полимерных молекул $\bf R$, которая численно аппроксимируются методом Курганова – Тедмора. Выбор модельных соотношений при разработке численной методики и подбор параметров моделирования позволили на качественном уровне смоделировать и исследовать режим эластической турбулентности при низких числах Рейнольдса $Re \sim 10^{-1}$. Уравнения динамики течения полимерного раствора отличаются от уравнений динамики ньютоновской жидкости наличием в правой части членов, описывающих силы, действующие со стороны полимерной компоненты. Коэффициент пропорциональности $A$ при данных членах характеризует степень обратного влияния количества полимеров на поток. В статье подробно исследуется влияние этого коэффициента на структуру и характеристики потока. Показано, что с его ростом течение становится более хаотическим. Построены энергетические спектры полученных течений и спектры полей растяжения полимеров для различных величин коэффициента $A$. В спектрах прослеживается инерциальный поддиапа- зон энергетического каскада для скорости течения с показателем $k \sim −4$, для каскада растяжений полимерных молекул с показателем $−1,6$.
Ключевые слова: численное моделирование, эластическая турбулентность, гидродинамическая неустойчивость. -
Построение высокопроизводительного вычислительного комплекса для моделирования задач газовой динамики
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 309-317Просмотров за год: 5. Цитирований: 6 (РИНЦ).Целью исследований является разработка программного комплекса для решения задач газовой динамики в многосвязных областях правильной геометрии на высокопроизводительной вычислительной системе. Сравниваются различные технологии реализации параллельных вычислений. Программный комплекс реализован на многопоточных параллельных системах, использующих для организации расчета как многоядерную архитектуру, так и массивно-параллельную. Проведено сравнение численных результатов на основе программного комплекса с известными решениями модельных задач. Проведено исследование производительности различных вычислительных платформ.
-
Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"