Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'математическое моделирование':
Найдено статей: 288
  1. Шумов В.В.
    Охрана биоресурсов в морском прибрежном пространстве: математическая модель
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1109-1125

    Охрана водных биоресурсов в морском прибрежном пространстве имеет существенные особенности (большое количество маломерных промысловых судов, динамизм обстановки, использование береговых средств охраны), в силу чего выделяется в отдельный класс прикладных задач. Представлена математическая модель охраны, предназначенная для определения состава средств обнаружения нарушителей и средств реализации обстановки в интересах обеспечения функции сдерживания незаконной деятельности. Решена тактическая теоретико-игровая задача: найден оптимальный рубеж патрулирования (стоянки) средств реализации (катеров охраны) и оптимальное удаление мест промысла нарушителей от берега. С использованием методов теории планирования эксперимента получены линейные регрессионные модели, позволяющие оценить вклад основных факторов, влияющих на результаты моделирования.

    В интересах повышения устойчивости и адекватности модели предложено использовать механизм ранжирования средств охраны, основанный на границах и рангах Парето и позволяющий учесть принципы охраны и дополнительные характеристики средств охраны. Для учета изменчивости обстановки предложены несколько сценариев, по которым целесообразно выполнять расчеты.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  2. Сухинов А.И., Чистяков А.Е., Семенякина А.А., Никитина А.В.
    Численное моделирование экологического состояния Азовского моря с применением схем повышенного порядка точности на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 151-168

    В статье приводятся результаты трехмерного моделирования экологического состояния мелководного водоема на примере Азовского моря с использованием схем повышенного порядка точности на многопроцессорной вычислительной системе Южного федерального университета. Для решения поставленной задачи были построены и изучены дискретные аналоги операторов конвективного и диффузионного переносов четвертого порядка точности в случае частичной заполненности ячеек расчетной области. Разработанные схемы повышенного (четвертого) порядка точности были использованы при решении задач водной экологии для моделирования пространственного распределения загрязняющих биогенных веществ, вызывающих бурный рост фитопланктона, многие виды которого являются токсичными и вредоносными. Использование схем повышенного порядка точности позволило повысить качество входных данных, а также уменьшить значение погрешности при решении модельных задач водной экологии. Были проведены численные эксперименты для задачи транспорта веществ на основе схем второго и четвертого порядков точностей, которые показали, что для задачи диффузии-конвекции удалось повысить точность в 48,7 раз. Предложен и численно реализован математический алгоритм, предназначенный для восстановления рельефа дна мелководного водоема на основе гидрографической информации (глубины водоема в отдельных точках или изолиний уровня), с помощью которого была получена карта рельефа дна Азовского моря, используемая для построения полей течений, рассчитанных на основе гидродинамической модели. Поля течений водного потока используются в работе в качестве входной информации для моделей водной экологии. Была разработана библиотека двухслойных итерационных методов, предназначенная для решения девятидиагональных сеточных уравнений, возникающих при дискретизации модельных задач изменения концентраций загрязняющих веществ, планктона и рыб на многопроцессорной вычислительной системе, что позволило повысить точность расчетных данных и дало возможность получать оперативные прогнозы изменения экологического состояния мелководного водоема в кратчайшие временные промежутки.

    Просмотров за год: 4. Цитирований: 31 (РИНЦ).
  3. Неверова Г.П., Жданова О.Л., Колбина Е.А., Абакумов А.И.
    Планктонное сообщество: влияние зоопланктона на динамику фитопланктона
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 751-768

    Методами математического моделирования оценивается спектр влияния зоопланктона на динамику обилия фитопланктона. Предложена трехкомпонентная модель сообщества «фитопланктон–зоопланктон» с дискретным временем, рассматривающая неоднородность зоопланктона по стадии развития и типу питания, учтено наличие каннибализма в сообществе зоопланктона, в процессе которого зрелые особи некоторых его видов поедают ювенильных. Процессы взаимодействия зоо- и фитопланктона в явном виде учтены в выживаемостях на ранних стадиях жизненного цикла зоопланктона; а также явно рассматривается убыль фитопланктона в результате выедания его биомассы зоопланктоном; используется трофическая функция Холлинга II типа для описания насыщения при потреблении биомассы. Динамика фитопланктонного сообщества представлена уравнением Рикера, что позволяет неявно учитывать ограничение роста биомассы фитопланктона доступностью внешних ресурсов (минерального питания, кислорода, освещенности и т. п.).

    Проанализированы сценарии перехода от стационарной динамики к колебаниям численности фито- и зоопланктона при различных значениях внутрипопуляционных параметров, определяющих характер динамики каждого из составляющих сообщество видов, и параметров их взаимодействия. Основное внимание уделено изучению огромного разнообразия сложной динамики сообщества. В рамках используемой в работе модели, описывающей динамику фитопланктона в отсутствие межвидового взаимодействия, происходит усложнение его динамики через серию бифуркаций удвоения периода. При этом с появлением зоопланктона каскад бифуркаций удвоения периода у фитопланктона и сообщества в целом реализуется раньше (при более низких скоростях воспроизводства клеток фитопланктона), чем в случае, когда фитопланктон развивается изолированно. При этом вариация уровня каннибализма зоопланктона способна значительно изменить как существующий в сообществе режим динамики, так и его бифуркацию; при определенной структуре пищевых отношений зоопланктона возможна реализация сценария Неймарка–Сакера в сообществе. Учитывая, что уровень каннибализма зоопланктона может меняться из-за естественных процессов созревания особей отдельных видов и достижения ими плотоядной стадии, можно ожидать выраженные изменения динамического режима в сообществе: резкие переходы от регулярной к квазипериодической динамике (по сценарию Неймарка–Сакера) и далее к точным циклам с небольшим периодом (обратная реализация каскада удвоения периода).

    Просмотров за год: 3.
  4. Волохова А.В., Земляная Е.В., Качалов В.В., Рихвицкий В.С.
    Моделирование процесса истощения газоконденсатного пласта
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095

    Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.

    В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.

    Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.

    Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 С) и карбонатного (при 60 С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.

  5. Кудров А.И., Шеремет М.А.
    Численный анализ естественной конвекции кориума в условиях внутрикорпусной локализации с учетом переменного тепловыделения
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 807-822

    В представленном исследовании проводится численное моделирование охлаждения кориума, расплава керамического топлива ядерного реактора и оксидов конструкционных материалов, в горизонтальной полуцилиндрической полости, стенки которой поддерживаются при постоянной температуре, в условиях естественной конвекции.

    Охлаждение кориума — это процесс характерный для тяжелой аварии на ядерном реакторе, которая может быть локализована путем удержания кориума внутри корпуса реактора, испытывающего внешнее охлаждение. Такой подход обеспечивает не только сравнительно простой способ удержания радиоактивности в пределах первого контура, но и возможность реализации на действующих блоках. Это выступает альтернативой ловушке расплава, еще одному методу локализации. Точный анализ и моделирование процесса охлаждения в таких условиях оказываются перспективной областью исследований в настоящее время.

    В начальный момент времени температура кориума принимается равной температуре стенки. Кориум, несмотря на останов реактора, обладает остаточным тепловыделением, которое уменьшается со временем согласно формуле Вэя–Вигнера. Процесс естественной конвекции внутри полости описывается системой уравнений в приближении Буссинеска, которая включает в себя уравнение движения, уравнение неразрывности и уравнение энергии. Конвективные потоки считаются ламинарными и двумерными, теплофизические свойства жидкости считаются независимыми от температуры.

    Краевая задача математической физики формулируется в безразмерных переменных «функция тока – завихренность». Полученные дифференциальные уравнения решаются численно при помощи метода конечных разностей c использованием локально-одномерной схемы Самарского применительно к уравнениям параболического типа.

    В результате исследований получены временные зависимости среднего числа Нуссельта на верхней и нижней стенках полости в широком диапазоне изменения числа Рэлея от 103 до 106. Указанные зависимости также были проанализированы при различных значениях безразмерного времени работы реактора до аварии. Исследования проведены как на основе распределений изолиний функции тока и температуры, так и с использованием временных профилей интенсивности конвективного течения и теплообмена.

  6. Сафиуллина Л.Ф., Губайдуллин И.М.
    Анализ идентифицируемости математической модели пиролиза пропана
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057

    Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.

    Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.

    Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.

    Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.

  7. Корепанов В.О., Чхартишвили А.Г., Шумов В.В.
    Теоретико-игровые и рефлексивные модели боевых действий
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 179-203

    Моделирование боевых действий является актуальной научной и практической задачей, направленной на предоставление командирам и штабам количественных оснований для принятия решений. Авторами предложена функция победы в боевых и военных действиях, основанная на функции конфликта Г. Таллока и учитывающая масштаб боевых (военных) действий. На достаточном объеме данных военной статистики выполнена оценка параметра масштаба и найдены его значения для тактического, оперативного и стратегического уровней. Исследованы теоретико-игровые модели «наступление-оборона», в которых стороны решают ближайшую и последующую задачи, имея построение войск в один или несколько эшелонов. На первом этапе моделирования находится решение ближайшей задачи — прорыв (удержание) пунктов обороны, на втором — решение последующей задачи — разгром противника в глубине обороны (контратака и восстановление обороны). Для тактического уровня с использованием равновесия Нэша найдены решения ближайшей задачи (распределение сил сторон по пунктам обороны) в антагонистической игре по трем критериям: а) прорыв слабейшего пункта; б) прорыв хотя бы одного пункта; в) средневзвешенная вероятность. Показано, что наступающей стороне целесообразно использовать критерий «прорыв хотя бы одного пункта», при котором, при прочих равных условиях, обеспечивается максимальная вероятность прорыва пунктов обороны. На втором этапе моделирования для частного случая (стороны при прорыве и удержании пунктов обороны руководствуются критерием прорыва слабейшего пункта) решена задача распределения сил и средств между тактическими задачами (эшелонами) по двум критериям: а) максимизация вероятности прорыва пункта обороны и вероятности разгрома противника в глубине обороны; б) максимизация минимального значения из названных вероятностей (критерий гарантированного результата). Важным аспектом боевых действий является информированность. Рассмотрены несколько примеров рефлексивных игр (игр, характеризующихся сложной взаимной информированностью) и осуществления информационного управления. Показано, при каких условиях информационное управление увеличивает выигрыш игрока, и найдено оптимальное информационное управление.

  8. Сызранова Н.Г., Андрущенко В.А.
    Численное моделирование физических процессов, приводящих к разрушению метеороидов в атмосфере Земли
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 835-851

    В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, рассмотрено падение трех одних из самых крупных и по некоторым показателям необычных болидов в истории метеоритики: Тунгусского, Витимского и Челябинского. Их необычность заключается в отсутствии каких-либо материальных метеоритных останков и кратеров в районе предполагаемого места падения для двух первых тел и необнаружении, как предполагается, основного материнского тела для третьего тела (из-за слишком малого количества массы выпавших осколков по сравнению с оценочной массой). Изучено воздействие аэродинамических нагрузок и тепловых потоков на эти тела, приводящее к интенсивному поверхностному уносу массы и возможной фрагментации. Скорости изучаемых небесных тел, изменение их масс определяются из модернизированной системы уравнений теории метеорной физики. Важный фактор, который здесь учитывается, — это переменность параметра уноса массы метеорита под действием тепловых потоков (радиационных и конвективных) вдоль траектории полета. Процесс фрагментации болидов в настоящей работе рассматривается в рамках модели прогрессивного дробления на основе статистической теории прочности с учетом влияния масштабного фактора на предел прочности объектов. Выявлены явления и эффекты, возникающие при различных кинематических и физических параметрах каждого из этих тел. В частности, изменение баллистики их полета в более плотных слоях атмосферы, заключающееся в переходе от режима падения к режиму подъема. При этом возможна реализация следующих сценариев события: первый— возврат тела обратно в космическое пространство при его остаточной скорости, большей второй космической; второй — переход тела на орбиту спутника Земли при остаточной скорости, большей первой космической; третий — при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и выпадение на значительном расстоянии от предполагаемого места падения. Именно реализация одного из этих трех сценариев события объясняет, например, отсутствие материальных следов, в том числе и кратеров в случае Тунгусского болида в окрестности вывала леса. Предположения о возможности таких сценариев события высказывались и ранее другими авторами, а в настоящей работе их реализация подтверждена результатами численных расчетов.

  9. Аксёнов А.А., Каширин В.С., Тимушев С.Ф., Шапоренко Е.В.
    Развитие метода акустико-вихревой декомпозиции для моделирования шума автомобильных шин
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 979-993

    Дорожный шум является одной из ключевых проблем в обеспечении поддержания высоких стандартов охраны окружающей среды. В диапазоне скоростей от 50 до 120 км/ч шины являются основным источником шума, создаваемого движущимся автомобилем. Хорошо известно, что шум и вибрация шин генерируются либо взаимодействием протектора шины и дорожного покрытия, либо некоторыми внутренними динамическими эффектами. В данной статье рассматривается применение нового метода моделирования генерации и распространения звука при движении автомобильной шины, основанного на применении так называемой акустико-вихревой декомпозиции. Используемые в настоящее время подходы к моделированию шума автомобильных шин основаны главным образом на применении уравнения Лайтхила и аэроакустической аналогии. Аэроакустическая аналогия не является математически строгой формулировкой для вывода источника (правой части) акустического волнового уравнения при решении задачи — разделения акустической и вихревой (псевдозвуковой) мод колебаний. При разработке метода акустико-вихревой декомпозиции проводится математически строгое преобразование уравнений движения сжимаемой среды для получения неоднородного волнового уравнения относительно пульсаций статической энтальпии с источниковым членом, который зависит от поля скоростей вихревой моды. При этом колебания давления в ближнем поле представляют собой сумму акустических колебаний и псевдозвука. Таким образом, метод акустико-вихревой декомпозиции позволяет адекватно моделировать и акустическое поле, и динамические нагрузки, генерирующие вибрацию шины, обеспечивая полное решение проблемы моделирования шума шин, который является результатом ее турбулентного обтекания с генерацией вихревого звука, а также динамического нагружения и излучения шума вследствие вибрации шины. Метод впервые реализован и тестируется в программном пакете FlowVision. Приводится сравнение результатов FlowVision с расчетами, полученными с помощью пакета LMS Virtual.Lab Acoustics, и объясняется некоторое различие в спектрах акустического поля.

  10. Шардыко И.В., Копылов В.М., Волняков К.А.
    Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347

    С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.

    В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.