Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Распространение языков в КНР на уровне провинций: оценивание при неполных данных
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 707-716Данная работа посвящена решению практической задачи восстановления данных по распространению языков на региональном уровне на примере Китайской Народной Республики. Необходимость получения таких данных связана с задачей вычисления индексов лингвистического разнообразия, которые, в свою очередь, активно используются при эмпирическом анализе и прогнозе факторов социально-экономического развития, а также могут служить индикаторами потенциальных конфликтов на рассматриваемых территориях. В качестве исходной информации мы используем сведения из базы данных «Этнолог» (Ethnologue), дополняя их общедоступными данными переписей населения. Рассматриваемые нами данные содержат по каждому языку (а) оценку количества жителей страны, считающих этот язык родным, и (б) индикаторы наличия таких жителей в каждой из провинций КНР. Наша задача — для всех пар «язык–провинция» оценить количество жителей провинции, считающих этот язык родным. Она сводится к решению недоопределенной системы алгебраических уравнений. Специфика данных Ethnologue заключается в том, что, в силу большой трудоемкости и стоимости сбора таких данных, а также неполноты сведений по соответствующему разделу в переписях населения, имеющаяся информация по отдельным языкам в различных провинциях представлена за различные периоды времени. Одновременное использование таких данных приводит к тому, что возникающая система уравнений имеет неточно определенную правую часть, поэтому мы строим приближенное решение, характеризуемое минимальной невязкой. Учитывая неоднородность исходных данных (некоторые из языков оказываются на порядки менее распространенными), мы переходим к использованию взвешенной невязки, определяя в каждом уравнении весовые коэффициенты как величины, обратно пропорциональные правой части. Такой способ формирования невязки позволяет восстановить искомые переменные. Более 92% переменных оказываются устойчивыми к изменениям правой части при вероятностном моделировании ошибок записей в исходных данных.
Ключевые слова: использование языков в регионах, индексы неоднородности, восстановление неполных данных.Просмотров за год: 3. -
Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.
Ключевые слова: экспертная система, извлечение знаний, лингвистическая переменная, степень принадлежности, нечеткое правило. -
Нечеткое моделирование восприимчивости человека к паническим ситуациям
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.
В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.
Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.
Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.
В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"