Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'критерий безопасности':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  2. Грачев В.А., Найштут Ю.С.
    Релаксационные колебания и устойчивость тонких оболочек
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820

    В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.

    Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.

    Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.

  3. Шумов В.В.
    Национальная безопасность и геопотенциал государства: математическое моделирование и прогнозирование
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 951-969

    Используя математическое моделирование, геополитический, исторический и естественнонаучный подходы, разработана модель национальной безопасности государства. Модель безопасности отражает дихотомию ценностей развития и сохранения, являясь произведением соответствующих функций. В работе оценены основные параметры модели и рассмотрены некоторые ее приложения в сфере геополитики и национальной безопасности.

    Просмотров за год: 11.
  4. Охапкина Е.П., Охапкин В.П.
    Подходы к кластеризации групп социальной сети
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1127-1139

    Исследование посвящено проблеме использования социальных сетей в качестве инструмента в противозаконной деятельности и источника информации, способного нести опасность обществу. В статье приводится структура мультиагентной системы, под управлением которой может осуществляться кластеризация групп социальной сети по критериям, однозначно определяющим группу в качестве деструктивной. Приведен алгоритм, который используют агенты системы для кластеризации.

    Просмотров за год: 8. Цитирований: 2 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.