Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Модель оперативного оптимального управления распределением финансовых ресурсов предприятия
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 343-358Просмотров за год: 33.В статье проведен критический анализ существующих методов и моделей, предназначенных для решения задачи планирования распределения финансовых ресурсов в цикле оперативного управления предприятием. Выявлен ряд существенных недостатков представленных моделей, ограничивающих сферу их применения: статический характер моделей, не учитывается вероятностный характер финансовых потоков, не выявляются существенно влияющие на платежеспособность и ликвидность предприятия ежедневные суммы остатков дебиторской и кредиторской задолженности. Это обуславливает необходи- мость разработки новой модели, отражающей существенные свойства системы планирования финансо- вых потоков — стохастичность, динамичность, нестационарность. Назначением такой модели является информационная поддержка принимаемых решений при формировании плана расходования финансовых ресурсов по критериям экономической эффективности.
Разработана модель распределения финансовых потоков, основанная на принципах оптимального динамического управления и методе динамического программирования, обеспечивающая планирование распределения финансовых ресурсов с учетом достижения достаточного уровня ликвидности и платежеспособности предприятия в условиях неопределенности исходных данных. Предложена алгоритмическая схема формирования целевого остатка денежных средств на принципах обеспечения финансовой устойчивости предприятия в условиях изменяющихся финансовых ограничений.
Особенностью предложенной модели является представление процесса распределения денежных средств в виде дискретного динамического процесса, для которого определяется план распределения финансовых ресурсов, обеспечивающий экстремум критерия эффективности. Формирование такого плана основано на согласовании платежей (финансовых оттоков) с их поступлениями (финансовыми притоками). Такой подход позволяет синтезировать разные планы, отличающиеся разным сочетанием финансовых оттоков, а затем осуществлять поиск наилучшего по заданному критерию. В качестве критерия эффективности приняты минимальные суммарные затраты, связанные с уплатой штрафов за несвоевременное финансирование расходных статей. Ограничениями в модели являются требование обеспечения минимально допустимой величины остатков накопленных денежных средств по подпериодам планового периода, а также обязательность осуществления платежей в течение планового периода с учетом сроков погашения этих платежей. Модель позволяет с высокой степенью эффективности решать задачу планирования распределения финансовых ресурсов в условиях неопределенности сроков и объемов их поступления, согласования притоков и оттоков финансовых ресурсов. Практическая значимость модели состоит в возможности улучшить качество финансового планирования, повысить эффективность управления и операционную эффективность предприятия.
-
Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.
Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.
В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.
Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.
-
Создание компьютерной модели для проведения верифицированного вычислительного эксперимента по восстановлению электрофизических параметров материалов произвольных форм и диэлектрических свойств
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1555-1571Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.
-
Математическая модель оптимизации с учетом нескольких критериев качества
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 489-502Проведение эффективной региональной политики с целью стабилизации производства невозможно без анализа динамики протекающих экономических процессов. Данная статья посвящена разработке математической модели, отражающей взаимодействие нескольких экономических агентов с учетом их интересов. Разработка такой модели и ее исследование может рассматриваться в качестве важного шага в решении теоретических и практических проблем управления экономическим ростом.
Ключевые слова: математическая модель, экономический рост, многокритериальная задача, экономический агент.Просмотров за год: 7. -
Национальная безопасность и геопотенциал государства: математическое моделирование и прогнозирование
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 951-969Используя математическое моделирование, геополитический, исторический и естественнонаучный подходы, разработана модель национальной безопасности государства. Модель безопасности отражает дихотомию ценностей развития и сохранения, являясь произведением соответствующих функций. В работе оценены основные параметры модели и рассмотрены некоторые ее приложения в сфере геополитики и национальной безопасности.
Ключевые слова: геополитика, безопасность государства, математическая модель, критерий безопасности.Просмотров за год: 11. -
Оценивание параметров моделей временных рядов с марковскими переключениями режимов
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918Просмотров за год: 36.В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.
-
Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531Просмотров за год: 28.В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
-
Теоретико-игровые и рефлексивные модели боевых действий
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 179-203Моделирование боевых действий является актуальной научной и практической задачей, направленной на предоставление командирам и штабам количественных оснований для принятия решений. Авторами предложена функция победы в боевых и военных действиях, основанная на функции конфликта Г. Таллока и учитывающая масштаб боевых (военных) действий. На достаточном объеме данных военной статистики выполнена оценка параметра масштаба и найдены его значения для тактического, оперативного и стратегического уровней. Исследованы теоретико-игровые модели «наступление-оборона», в которых стороны решают ближайшую и последующую задачи, имея построение войск в один или несколько эшелонов. На первом этапе моделирования находится решение ближайшей задачи — прорыв (удержание) пунктов обороны, на втором — решение последующей задачи — разгром противника в глубине обороны (контратака и восстановление обороны). Для тактического уровня с использованием равновесия Нэша найдены решения ближайшей задачи (распределение сил сторон по пунктам обороны) в антагонистической игре по трем критериям: а) прорыв слабейшего пункта; б) прорыв хотя бы одного пункта; в) средневзвешенная вероятность. Показано, что наступающей стороне целесообразно использовать критерий «прорыв хотя бы одного пункта», при котором, при прочих равных условиях, обеспечивается максимальная вероятность прорыва пунктов обороны. На втором этапе моделирования для частного случая (стороны при прорыве и удержании пунктов обороны руководствуются критерием прорыва слабейшего пункта) решена задача распределения сил и средств между тактическими задачами (эшелонами) по двум критериям: а) максимизация вероятности прорыва пункта обороны и вероятности разгрома противника в глубине обороны; б) максимизация минимального значения из названных вероятностей (критерий гарантированного результата). Важным аспектом боевых действий является информированность. Рассмотрены несколько примеров рефлексивных игр (игр, характеризующихся сложной взаимной информированностью) и осуществления информационного управления. Показано, при каких условиях информационное управление увеличивает выигрыш игрока, и найдено оптимальное информационное управление.
-
Агентная модель межкультурных взаимодействий: возникновение культурных неопределенностей
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1143-1162В статье описывается имитационная агентная модель межкультурных взаимодействий в стране, население которой принадлежит к разным культурам. Считается, что пространство культур может быть представлено как гильбертово пространство, в котором различным культурам соответствуют определенные подпространства. В модели понятие «культура» понимается как некоторое структурированное подпространство гильбертова пространства. Это позволяет описывать состояние агентов вектором в гильбертовом пространстве. Считается, что каждый агент описывается принадлежностью к определенной культуре. Численности агентов, принадлежащие определенным культурам, определяются демографическими процессами, которые соответствуют данным культурам, глубиной и целостностью образовательного процесса, а также интенсивностью межкультурных контактов. Взаимодействие между агентами происходит внутри кластеров, на которые по определенным критериям разбивается все множество агентов. При взаимодействии между агентами по определенному алгоритму изменяются длина и угол, характеризующий состояние агента. В процессе имитации в зависимости от количества агентов, относящихся к различным культурам, интенсивности демографических и образовательных процессов, а также интенсивности межкультурных контактов формируются совокупности агентов (кластеры), агенты которых принадлежат разным культурам. Такие межкультурные кластеры не принадлежат целиком ни к одной из рассматриваемых первоначально в модели культур. Такие межкультурные кластеры порождают неопределенности в культурной динамике. В работе приводятся результаты имитационных экспериментов, которые иллюстрируют влияние демографических и образовательных процессов на динамику межкультурных кластеров. Обсуждаются вопросы развития предложенного подхода к изучению (обсуждению) переходных состояний развития культур.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"