Текущий выпуск Номер 4, 2024 Том 16

Все выпуски

Результаты поиска по 'модели регрессии':
Найдено статей: 12
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
  3. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
  5. Тихов М.С., Бородина Т.С.
    Математическая модель и компьютерный анализ критериев однородности зависимости «доза–эффект»
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 267-273

    Данная работа посвящена сравнению двух критериев однородности: критерия χ2, основанного на таблицах сопряженности признаков 2 × 2, и критерия однородности, основанного на асимптотических распределениях суммируемых квадратичных уклонений оценок функции распределения в модели зависимости «доза–эффект». Оценка мощности критериев производится при помощи компьютерного моделирования. Для построения функций эффективности используется метод ядерной оценки регрессии, основанный на оценке Надарая–Ватсона.

    Просмотров за год: 6.
  6. Михеев А.В., Казаков Б.Н.
    Новый метод точечной оценки параметров парной регрессии
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 57-77

    Описывается новый метод отыскания параметров однофакторной регрессионной модели: метод наибольшего косинуса. Реализация метода предполагает разделение параметров модели на две группы. Параметры первой группы, отвечающие за угол между вектором экспериментальных данных и вектором регрессионной модели, определяются по максимуму косинуса угла между этими векторами. Во вторую группу входит масштабный множитель. Он определяется «спрямлением» зависимости координат вектора экспериментальных данных от координат вектора регрессионной модели. Исследована взаимосвязь метода наибольшего косинуса с методом наименьших квадратов. Эффективность метода проиллюстрирована примерами из физики.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  7. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

  8. Силаева В.А., Силаева М.В., Силаев А.М.
    Оценивание параметров моделей временных рядов с марковскими переключениями режимов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918

    В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.

    Просмотров за год: 36.
  9. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Горбачёв Р.А.
    Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195

    Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.

  10. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.