Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'коэффициент качества':
Найдено статей: 70
  1. Басаева Е.К., Каменецкий Е.С., Хосаева З.Х.
    Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247

    Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.

    Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.

    Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.

    С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.

    Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.

    В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.

  2. Уифтер Т.Т., Разумный Ю.Н., Орловский А.В., Лобанов В.К.
    Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370

    Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.

  3. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  4. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Просмотров за год: 8.
  5. Усанов М.С., Кульберг Н.С., Яковлева Т.В., Морозов С.П.
    Определение дозы излучения компьютерной томографии по анализу уровня шума
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 525-533

    В статье рассматривается процесс создания эффективного алгоритма для определения количества излученных квантов с рентгеновской трубки в исследованиях компьютерной томографии. Анализ отечественной и зарубежной литературы показал, что большинство работ в области радиометрии и радиографии принимают во внимание табличные значения показателей поглощения рентгеновского излучения, а индивидуальные показатели дозы не учитывают вовсе, т. к. во многих исследованиях отсутствует радиометрический отчет (Dose Report) и для облегчения расчетов статистики применяется средний показатель. В связи с этим было принято решение разработать средства выявления данных об ионизирующей нагрузке путем анализа шума компьютерной томографии (КТ). В качестве основы алгоритма принята математическая модель распределения шума собственной разработки на основе распределения Пуассона и Гаусса от логарифмической величины. Результирующая математическая модель проверялась на данных КТ калибровочного фантома, состоящего из трех пластиковых цилиндров, заполненных водой, коэффициент поглощения рентгеновского излучения которых известен из табличных значений. Данные были получены с нескольких КТ приборов различных производителей (Siemens, Toshiba, GE, Phillips). Разработанный алгоритм позволил рассчитать количество излученных квантов рентгеновского излучения за единицу времени. Эти данные, с учетом уровня шума и радиусов цилиндров, были преобразованы в величины поглощения рентгеновского излучения, после чего проводилось сравнение с табличными значениями. В результате работы алгоритма с данными КТ различных конфигураций были получены экспериментальные данные, согласующиеся с теоретической частью и математической моделью. Результаты показали хорошую точность алгоритма и математического аппарата, что может говорить о достоверности полученных данных. Данная математическая модель уже применяется в программе шумоподавления КТ собственной разработки, где она участвует в качестве средства создания динамического порога шумоподавления. В данный момент алгоритм проходит процедуру доработки для работы с реальными данными компьютерной томографии пациентов.

    Просмотров за год: 23. Цитирований: 1 (РИНЦ).
  6. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

  7. Демидов А.С., Демидова И.В.
    О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044

    Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.

    Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.

    Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.

    Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.

  8. Гиричева Е.Е.
    Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199

    В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.

    В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.

    В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.

  9. Решитько М.А., Угольницкий Г.А., Усов А.Б.
    Численный метод нахождения равновесий Нэша и Штакельберга в моделях контроля качества речных вод
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 653-667

    В статье рассмотрена задача построения равновесий Нэша и Штакельберга при исследовании динамической системы контроля качества речных вод. Учитывается влияние субъектов управления двух уровней: одного ведущего и нескольких ведомых. В качестве ведущего (супервайзера) выступает природоохранный орган, а в роли ведомых (агентов) — промышленные предприятия. Основной целью супервайзера является поддержание допустимой концентрации загрязняющих веществ в речной воде. Добиться этого он может не единственным образом, поэтому, кроме того, супервайзер стремится к оптимизации своего целевого функционала. Супервайзер воздействует на агентов, назначая величину платы за сброс загрязнений в водоток. Плата за загрязнение от агента поступает в федеральный и местные бюджеты, затем распределяется на общих основаниях. Таким образом, плата увеличивает бюджет супервайзера, что и отражено в его целевом функционале. Причем плата за сброс загрязнений начисляется за количество и/или качество сброшенных загрязнений. К сожалению, для большинства систем контроля качества речных вод такая практика неэффективна из-за малого размера платы за сброс загрязнений. В статье и решается задача определения оптимального размера платы за сброс загрязнений, который позволяет поддерживать качество речной воды в заданном диапазоне.

    Агенты преследуют только свои эгоистические цели, выражаемые их целевыми функционалами, и не обращают внимания на состояние речной системы. Управление агента можно рассматривать как часть стока, которую агент очищает, а управление супервайзера — как назначаемый размер платы за сброс оставшихся загрязнений в водоток.

    Для описания изменения концентраций загрязняющих веществ в речной системе используется обыкновенное дифференциальное уравнение. Проблема поддержания заданного качества речной воды в рамках предложенной модели исследуется как с точки зрения агентов, так и с точки зрения супервайзера. В первом случае возникает дифференциальная игра в нормальной форме, в которой строится равновесие Нэша, во втором — иерархическая дифференциальная игра, разыгрываемая в соответствии с информационным регламентом игры Штакельберга. Указаны алгоритмы численного построения равновесий Нэша и Штакельберга для широкого класса входных функций. При построении равновесия Нэша возникает необходимость решения задач оптимального управления. Решение этих задач проводится в соответствии с принципом максимума Понтрягина. Строится функция Гамильтона, полученная система дифференциальных уравнений решается численно методом стрельбы и методом конечных разностей. Проведенные численные расчеты показывают, что низкий размер платы за единицу сброшенных в водоток загрязнений приводит к росту концентрации загрязняющих веществ в водотоке, а высокий — к банкротству предприятий. Это приводит к задаче нахождения оптимальной величины платы за сброс загрязнений, то есть к рассмотрению проблемы с точки зрения супервайзера. В этом случае возникает иерархическая дифференциальная игра супервайзера и агентов, в которой ищется равновесие Штакельберга. Возникает задача максимизации целевого функционала супервайзера с учетом управлений агентов, образующих равновесие Нэша. При нахождении оптимальных управлений супервайзера используется метод качественно репрезентативных сценариев, а для агентов — принцип максимума Понтрягина. Проведены численные эксперименты, найден коэффициент системной согласованности. Полученные численные результаты позволяют сделать вывод, что система контроля качества речных вод плохо системно согласована и для достижения стабильного развития системы необходимо иерархическое управление.

  10. Бобков В.Г., Абалакин И.В., Козубская Т.К.
    Методика расчета аэродинамических характеристик винтов вертолета на основе реберно-ориентированных схем в комплексе программ NOISEtte
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1097-1122

    В статье дается детальное описание численной методики моделирования турбулентного обтекания вращающихся винтов вертолета и расчета аэродинамических характеристик винта. В качестве базовой математической модели используется система осредненных по Рейнольдсу уравнений Навье – Стокса для вязкого сжимаемого газа, замкнутая моделью турбулентности Спаларта – Аллмараса. Итоговая модель формулируется в неинерциальной вращающейся системе координат, связанной с винтом. Для задания граничных условий на поверхности винта используются пристеночные функции.

    Численное решение полученной системы дифференциальных уравнений проводится на гибридных неструктурированных сетках, включающих призматические слои вблизи поверхности обтекаемого тела. Численный метод строится на основе оригинальных вершинно-центрированных конечно-объемных EBR-схем. Особенностью этих схем является их повышенная точность, которая достигается за счет использования реберно-ориентированной реконструкции переменных на расширенных квазиодномерных шаблонах, и умеренная вычислительная стоимость, позволяющая проводить серийные расчеты. Для приближенного решения задачи о распаде разрыва используются методы Роу и Лакса – Фридрихса. Метод Роу корректируется в случае низкоскоростных течений. При моделировании разрывов или решений с большими градиентами используется квазиодномерная WENO-схема или локальное переключение на квазиодномерную TVD-реконструкцию. Интегрирование по времени проводится по неявной трехслойной схеме второго порядка аппроксимации с линеаризацией по Ньютону системы разностных уравнений. Для решения системы линейных уравнений используется стабилизированный метод сопряженных градиентов.

    Численная методика реализована в составе исследовательского программного комплекса NOISEtte согласно двухуровневой MPI–OpenMP-модели, позволяющей с высокой эффективностью проводить расчеты на сетках, состоящих из сотен миллионов узлов, при одновременном задействовании сотен тысячп роцессорных ядер современных суперкомпьютеров.

    На основе результатов численного моделирования вычисляются аэродинамические характеристики винта вертолета, а именно сила тяги, крутящий момент и их безразмерные коэффициенты.

    Валидация разработанной методики проводится путем моделирования турбулентного обтекания двухлопастного винта Caradonna – Tung и четырехлопастного модельного винта КНИТУ-КАИ на режиме висения, рулевого винта в кольце, а также жесткого несущего винта в косом потоке. численные результаты сравниваются с имеющими экспериментальными данными.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.