Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование процессов разборки сложных изделий
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 525-537Работа посвящена моделированию процессов разборки сложных изделий в системах автоматизированного проектирования. Возможность демонтажа изделия в заданной последовательности формируется на ранних этапах проектирования, а реализуется в конце жизненного цикла. Поэтому современные системы автоматизированного проектирования должны иметь инструменты для оценки сложности демонтажа деталей и сборочных единиц. Предложена гиперграфовая модель механической структуры изделия. Показано, что математическим описанием когерентных и секвенциальных операций разборки является нормальное разрезание ребра гиперграфа. Доказана теорема о свойствах нормальных разрезаний. Данная теорема позволяет организовать простую рекурсивную процедуру генерации всех разрезаний гиперграфа. Множество всех разрезаний представляется в виде И–ИЛИ-дерева. Дерево содержит информацию о планах разборки изделия и его частей. Предложены математические описания процессов разборки различного типа: полной, неполной, линейной, нелинейной. Показано, что решающий граф И–ИЛИ-дерева представляет собой модель разборки изделия и всех его составных частей, полученных в процессе демонтажа. Рассмотрена важная характеристика сложности демонтажа деталей — глубина вложения. Разработан способ эффективного расчета оценки снизу данной характеристики.
-
Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.
Ключевые слова: сборка, последовательность сборки, CAAP-система, САПР, анализ геометрических препятствий. -
Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.
Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.
Ключевые слова: численная схема «КАБАРЕ», слабосжимаемая жидкость, неустойчивость Кельвина–Гельгольца, завихренность, энстрофия, инкремент неустойчивости, недоразрешаемые слои, «паразитный» вихрь, свертывание, инерционный интервал, когерентные структуры, филаментация, скорость диссипации, дилатация.Просмотров за год: 17. -
Структурные модели изделия в автоматизированных системах проектирования
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность. -
Гиперграфовый подход в декомпозиции сложных технических систем
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.
-
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"