Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.
-
Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.
-
Численное исследование модели Холстейна в разных термостатах
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.
Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.
В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.
-
Описание процессов в ансамблях фотосинтетических реакционных центров с помощью кинетической модели типа Монте-Карло
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1207-1221Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.
В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"